日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知F1,F(xiàn)2是橢圓(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則橢圓C的離心率為( )
          A.
          B.
          C.
          D.
          【答案】分析:連接OQ,PF1,先利用三角形中位線定理證明OQ∥PF1,OQ=PF1,而OQ即為圓的半徑b,從而得焦半徑PF1=2b,再利用橢圓的定義,得PF2=2a-2b,最后利用直線與圓相切的幾何性質(zhì),證明PF1⊥PF2,從而在三角形中利用勾股定理得到a、b、c間的等式,進(jìn)而計(jì)算離心率即可
          解答:解:如圖:連接OQ,PF1,∵點(diǎn)Q為線段PF2的中點(diǎn),∴OQ∥PF1,OQ=PF1,
          ∴PF1=2OQ=2b,
          由橢圓定義,PF1+PF2=2a,∴PF2=2a-2b
          ∵線段PF2與圓x2+y2=b2相切于點(diǎn)Q,
          ∴OQ⊥PF2,
          ∴PF1⊥PF2,且|F1F2|=2c,
          ∴(2b)2+(2a-2b)2=(2c)2
          即3b=2a,5a2=9c2
          ∴e==
          故選 B
          點(diǎn)評:本題主要考查了橢圓的定義及其運(yùn)用,直線與圓的位置關(guān)系,橢圓的幾何性質(zhì)及其離心率的求法,屬基礎(chǔ)題
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知F1、F2是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則
          PF1
          PF2
          =
           
          ;橢圓C的離心率為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知F1,F(xiàn)2是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則橢圓C的離心率為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•鷹潭一模)如圖,已知F1,F(xiàn)2是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則橢圓C的離心率為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知F1、F2分別為橢圓C1
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)
          的上、下焦點(diǎn),其中F1也是拋物線C2x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
          5
          3

          (1)求橢圓C1的方程;
          (2)已知點(diǎn)P(1,3)和圓O:x2+y2=b2,過點(diǎn)P的動直線l與圓O相交于不同的兩點(diǎn)A,B,在線段AB上取一點(diǎn)Q,滿足:
          AP
          =-λ
          PB
          ,
          AQ
          QB
          (λ≠0且λ≠±1),
          求證:點(diǎn)Q總在某條定直線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知F1、F2是橢圓
          x2
          172
          +
          y2
          152
          =1
          的左、右焦點(diǎn),A是橢圓短軸的一個端點(diǎn),P是橢圓上任意一點(diǎn),過F1引∠F1PF2的外角平分線的垂線,垂足為Q,則|AQ|的最大值為
           

          查看答案和解析>>

          同步練習(xí)冊答案