日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y2=4x的焦點為F,準線與x軸的交點為M,N為拋物線上的一點,且|NF|=
          3
          2
          |MN|,則∠NMF=( 。
          A、
          π
          6
          B、
          π
          4
          C、
          π
          3
          D、
          12
          分析:由拋物線的定義可得d=|NF|,由題意得 cos∠NMF=
          d
          |MN|
          ,把已知條件代入可得cos∠NMF,進而求得∠NMF.
          解答:解:設(shè)N到準線的距離等于d,由拋物線的定義可得d=|NF|,
           由題意得 cos∠NMF=
          d
          |MN|
          =
          |NF|
          |MN|
          =
          3
          2

          ∴∠NMF=
          π
          6
          ,
          故選A.
          點評:本題考查拋物線的定義、以及簡單性質(zhì)的應(yīng)用.利用拋物線的定義是解題的突破口.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線y2=4x的焦點為F,其準線與x軸交于點M,過M作斜率為k的直線與拋物線交于A、B兩點,弦AB的中點為P,AB的垂直平分線與x軸交于點E(x0,0).
          (1)求k的取值范圍;
          (2)求證:x0>3;
          (3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線
          y
          2
           
          =4x
          的焦點為F,過點A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
          x-2y+4=0
          x-2y+4=0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線y2=4x,焦點為F,頂點為O,點P(m,n)在拋物線上移動,Q是OP的中點,M是FQ的中點.
          (1)求點M的軌跡方程.
          (2)求
          nm+3
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點,拋物線的焦點為F,那么|
          FA
          |+|
          FB
          |
          =
          7
          7

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線y2=4x,其焦點為F,P是拋物線上一點,定點A(6,3),則|PA|+|PF|的最小值是
          7
          7

          查看答案和解析>>

          同步練習(xí)冊答案