日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若函數(shù)f(x)在R上可導(dǎo),且f(x)=x2+2f′(2)x+m,(m∈R),則(  )
          分析:由于f(x)=x2+2f′(2)x+m,(m∈R),只要求出2f′(2)的值,可先求f′(x),再令x=2即可.利用二次函數(shù)的單調(diào)性即可解決問題.
          解答:解:∵f(x)=x2+2f′(2)x+m,
          ∴f′(x)=2x+2f′(2),
          ∴f′(2)=2×2+2f′(2),
          ∴f′(2)=-4.
          ∴f(x)=x2-8x+m,其對(duì)稱軸方程為:x=4,
          ∴f(0)=m,f(5)=25-40+m=-15+m,
          ∴f(0)>f(5).
          故選C.
          點(diǎn)評(píng):本題考查二次函數(shù)的單調(diào)性,求出2f′(2)的值是關(guān)鍵,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          9、若函數(shù)f(x)在R上是減函數(shù),那么f(2x-x2)的單調(diào)遞增區(qū)間是
          [1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2-x+b,x≥3
          2x,x<3
          ,若函數(shù)f(x)在R上為增函數(shù),則b的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=
          (3-a)x-3,(x<7)
          ax-6,(x≥7)
          ,若函數(shù)f(x)在R上單調(diào)遞增,那么實(shí)數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)h使得對(duì)于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),則稱f(x)為M上的“h階高調(diào)函數(shù)”.給出如下結(jié)論:
          ①若函數(shù)f(x)在R上單調(diào)遞增,則存在非零實(shí)數(shù)h使f(x)為R上的“h階高調(diào)函數(shù)”;
          ②若函數(shù)f(x)為R上的“h階高調(diào)函數(shù)”,則f(x)在R上單調(diào)遞增;
          ③若函數(shù)f(x)=x2為區(qū)間[-1,+∞)上的“h階高誣蔑財(cái)函數(shù)”,則h≥2;
          ④若函數(shù)f(x)在R上的奇函數(shù),且x≥0時(shí),f(x)=|x-1|-1,則f(x)只能是R上的“4階高調(diào)函數(shù)”.
          其中正確結(jié)論的序號(hào)為( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案