日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lnx-
          a
          x
          (a∈R)

          (1)判斷f(x)在定義域上的單調(diào)性;
          (2)若f(x)在[1,e]上的最小值為2,求a的值.
          (1)由題意得f(x)的定義域為(0,+∞),.(0,+∞)
          ①當a≥0時,f'(x)>0,故f(x)在上為增函數(shù);
          ②當a<0時,由f'(x)=0得x=-a;由f'(x)>0得x>-a;由f'(x)<0得x<-a;
          ∴f(x)在(0,-a]上為減函數(shù);在(-a,+∞)上為增函數(shù).
          所以,當a≥0時,f(x)在(0,+∞)上是增函數(shù);當a<0時,f(x)在(0,-a]上是減函數(shù),在(-a,+∞)上是增函數(shù).
          (2)∵f′(x)=
          x+a
          x2
          ,x>0.由(1)可知:
          ①當a≥0時,f(x)在(0,+∞)上為增函數(shù),f(x)min=f(1)=-a=2,得a=-2,矛盾!
          ②當0<-a≤1時,即a≥-1時,f(x)在(0,+∞)上也是增函數(shù),f(x)min=f(1)=-a=2,∴a=-2(舍去).
          ③當1<-a<e時,即-e<a<-1時,f(x)在[1,-a]上是減函數(shù),在(-a,e]上是增函數(shù),
          ∴f(x)min=f(-a)=ln(-a)+1=2,得a=-e(舍去).
          ④當-a≥e時,即a≤-e時,f(x)在[1,e]上是減函數(shù),有f(x)min=f(e)=1-
          a
          e
          =2
          ,
          ∴a=-e.
          綜上可知:a=-e.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          1
          3
          x3-
          3
          2
          ax2-(a-3)x+b

          (1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實數(shù)a,b的值:
          (2)當a<3時,令g(x)=
          f′(x)
          x
          ,求y=g(x)在[l,2]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          1
          2
          x2-alnx
          的圖象在點P(2,f(2))處的切線方程為l:y=x+b
          (1)求出函數(shù)y=f(x)的表達式和切線l的方程;
          (2)當x∈[
          1
          e
          ,e]
          時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=lnx,g(x)=
          12
          x2+a
          (a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點的橫坐標為1.
          (1)求直線l的方程及a的值;
          (2)當k>0時,試討論方程f(1+x2)-g(x)=k的解的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          13
          x3+x2+ax

          (1)討論f(x)的單調(diào)性;
          (2)設f(x)有兩個極值點x1,x2,若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=x3-
          32
          ax2+b
          ,a,b為實數(shù),x∈R,a∈R.
          (1)當1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
          (2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;
          (3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數(shù).

          查看答案和解析>>

          同步練習冊答案