如圖,在四棱錐中,四邊形
是菱形,
,
為
的中點(diǎn).
(1)求證:面
; (2)求證:平面
平面
.
(1)要證明線面平行,則可以根據(jù)線面平行的判定定理來證明。
(2)對于面面垂直的證明,要根據(jù)已知中的菱形的對角線垂直,以及面
來加以證明。
解析試題分析:(1)證明:設(shè),連接EO,因?yàn)镺,E分別是BD,PB的中點(diǎn),所以
4分
而,所以
面
7分
(2)連接PO,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/23/3/0bexv4.png" style="vertical-align:middle;" />,所以,又四邊形
是菱形,所以
10分
而面
,
面
,
,所以
面
13分
又面
,所以面
面
14分
考點(diǎn):線面的垂直和面面垂直
點(diǎn)評:解決的關(guān)鍵是根據(jù)線面垂直和面面垂直的判定定理來證明,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角
中.
(1) 求D、C之間的距離;
(2) 求CD與面ABC所成的角的大小;
(3) 求證:對于AD上任意點(diǎn)H,CH不與面ABD垂直。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱的所有棱長都為2,
為
中點(diǎn),
平面
(1)求證:平面
;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn)。
(1)求證:CD⊥AE;
(2)求證:PD⊥面ABE。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共13分)
如圖所示,正方形與矩形
所在平面互相垂直,
,點(diǎn)E為
的中點(diǎn)。
(Ⅰ)求證:
(Ⅱ) 求證:
(Ⅲ)在線段AB上是否存在點(diǎn),使二面角
的大小為
?若存在,求出
的長;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=,
求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
在四棱錐中,
//
,
,
,
平面
,
.
(Ⅰ)設(shè)平面平面
,求證:
//
;
(Ⅱ)求證:平面
;
(Ⅲ)設(shè)點(diǎn)為線段
上一點(diǎn),且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com