日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知直線x+y﹣1=0與橢圓 相交于A,B兩點,線段AB中點M在直線 上.
          (1)求橢圓的離心率;
          (2)若橢圓右焦點關(guān)于直線l的對稱點在單位圓x2+y2=1上,求橢圓的方程.

          【答案】
          (1)解:設(shè)A,B兩點的坐標分別為(x1,y1),(x2,y2),

          得:(a2+b2)x2﹣2a2x+a2﹣a2b2=0.

          △=﹣(2a22﹣(a2+b2)(a2﹣a2b2)>0,即a2+b2>1.

          x1+x2= ,y1+y2=﹣( x1+x2)+2= ,

          ∴點M的坐標為( , ).

          又點M在直線l上,

          =0,

          ∴a2=2b2=2(a2﹣c2),∴a2=2c2,


          (2)解:由(1)知b=c,設(shè)橢圓的右焦點F(b,0)關(guān)于直線 的對稱點為(x0,y0),

          ,解得

          ∵x02+y02=1,

          ,

          ∴b2=1,顯然有a2+b2=3>1.

          ∴所求的橢圓的方程為


          【解析】(1)設(shè)出A、B兩點的坐標,聯(lián)立直線與橢圓的方程得關(guān)于x的一元二次方程;由根與系數(shù)的關(guān)系,可得x1+x2 , y1+y2;從而得線段AB的中點坐標,代入直線l的方程,得出a、c的關(guān)系,從而求得橢圓的離心率.(2)設(shè)橢圓的右焦點坐標為F(b,0),F(xiàn)關(guān)于直線l的對稱點為(x0 , y0),則由互為對稱點的連線被對稱軸垂直平分,可得方程組,解得x0、y0;代入圓的方程 x02+y02=1,得出b的值,從而得橢圓的方程.
          【考點精析】關(guān)于本題考查的橢圓的標準方程,需要了解橢圓標準方程焦點在x軸:,焦點在y軸:才能得出正確答案.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)函數(shù)y=f(x)的定義域為D,值域為A,如果存在函數(shù)x=g(t),使得函數(shù)y=f[g(t)]的值域仍是A,那么稱x=g(t)是函數(shù)y=f(x)的一個等值域變換.
          (1)判斷下列函數(shù)x=g(t)是不是函數(shù)y=f(x)的一個等值域變換?說明你的理由; ①
          ②f(x)=x2﹣x+1,x∈R,x=g(t)=2t , t∈R.
          (2)設(shè)f(x)=log2x的定義域為x∈[2,8],已知 是y=f(x)的一個等值域變換,且函數(shù)y=f[g(t)]的定義域為R,求實數(shù)m、n的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件樣本,測量這些樣本的一項質(zhì)量指標值,由測量結(jié)果得如下頻數(shù)分布表:

          質(zhì)量指標
          值分組

          [75,85)

          [85,95)

          [95,105)

          [105,115)

          [115,125]

          頻數(shù)

          6

          26

          38

          22

          8

          則樣本的該項質(zhì)量指標值落在[105,125]上的頻率為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直四棱柱 中,底面 是邊長為2的正方形, 分別為線段 , 的中點.

          (1)求證: ||平面 ;
          (2)四棱柱 的外接球的表面積為 ,求異面直線 所成的角的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列各組函數(shù)是相等函數(shù)的為( )
          A.
          B.f(x)=(x﹣1)2 , g(x)=x﹣1
          C.f(x)=x2+x+1,g(t)=t2+t+1
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】從1,2,3,4,5,6這六個數(shù)中,不放回地任意取兩個數(shù),每次取一個數(shù),則所取的兩個數(shù)都是偶數(shù)的概率為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱錐S﹣ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一點.

          (1)求證:平面EBD⊥平面SAC;
          (2)設(shè)SA=4,AB=2,求點A到平面SBD的距離;
          (3)設(shè)SA=4,AB=2,當OE丄SC時,求二面角E﹣BD﹣C余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若f(x)是定義在(0,+∞)上的函數(shù),當x>1時,f(x)>0,且滿足
          (1)求f(1)的值;
          (2)判斷并證明函數(shù)的單調(diào)性;
          (3)若f(2)=1,解不等式

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)=x5 +bx﹣8,且f(﹣2)=10,則f(2)=( )
          A.﹣26
          B.﹣18
          C.﹣10
          D.10

          查看答案和解析>>

          同步練習冊答案