日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為

          (Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;

          (Ⅱ)設(shè)與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求四邊形面積的取值范圍.

          【答案】(Ⅰ),圓;(Ⅱ).

          【解析】

          (Ⅰ)將參數(shù)方程化為普通方程,可知曲線是以為圓心,為半徑的圓;根據(jù)直角坐標(biāo)與極坐標(biāo)互化原則可得到曲線的極坐標(biāo)方程;(Ⅱ)設(shè),,聯(lián)立與圓方程可得韋達(dá)定理的形式;則,整理可得,代入替換可求得;根據(jù)垂直關(guān)系可知所求面積為,根據(jù)三角函數(shù)知識可求得結(jié)果.

          (Ⅰ)由為參數(shù))消去參數(shù)得:

          將曲線的方程化成極坐標(biāo)方程得:

          曲線是以為圓心,為半徑的圓

          (Ⅱ)設(shè),

          與圓聯(lián)立方程得:

          ,

          三點(diǎn)共線

          代替可得:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)處的切線與直線平行.

          1)求實(shí)數(shù)的值;

          2)若函數(shù)上恰有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.

          3)記函數(shù),設(shè)是函數(shù)的兩個極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某周末,鄭州方特夢幻王國匯聚了八方來客.面對該園區(qū)內(nèi)相鄰的兩個主題公園“千古蝶戀”和“西游傳說”,成年人和未成年人選擇游玩的意向會有所不同.某統(tǒng)計(jì)機(jī)構(gòu)對園區(qū)內(nèi)的100位游客(這些游客只在兩個主題公園中二選一)進(jìn)行了問卷調(diào)查.調(diào)查結(jié)果顯示,在被調(diào)查的50位成年人中,只有10人選擇“西游傳說”,而選擇“西游傳說”的未成年人有20.

          1)根據(jù)題意,請將下面的列聯(lián)表填寫完整;

          選擇“西游傳說”

          選擇“千古蝶戀”

          總計(jì)

          成年人

          未成年人

          總計(jì)

          2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有的把握認(rèn)為選擇哪個主題公園與年齡有關(guān).

          附參考公式與表:.

          0.100

          0.050

          0.025

          0.010

          0.001

          2.706

          3.841

          5.024

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的一個頂點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在橢圓上且關(guān)于原點(diǎn)的對稱點(diǎn)為,過的垂線交橢圓于另一點(diǎn),連軸于.

          1)求橢圓的方程;

          2)求證:軸;

          3)記的面積為的面積為,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過去大多數(shù)人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財(cái)工具也多了起來,為了研究某種理財(cái)工具的使用情況,現(xiàn)對年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成5組:,,,,并整理得到頻率分布直方圖:

          1)求圖中的a值;

          2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個組中,各抽取多少人;

          3)由頻率分布直方圖,求所有被調(diào)查人員的平均年齡.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對角線的交點(diǎn),.

          (1)證明:平面;

          (2)若側(cè)面與底面垂直,求五面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè),函數(shù)

          1當(dāng)時,求曲線在點(diǎn)處的切線方程;

          2恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)討論的極值點(diǎn);

          (2)若有最大值,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓的一個焦點(diǎn)為,且橢圓過點(diǎn),為坐標(biāo)原點(diǎn),

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個交點(diǎn)、,且?若存在,寫出該圓的方程,并求的最大值,若不存在說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案