【題目】已知點(diǎn),橢圓
的離心率為
是橢圓的焦點(diǎn),直線
的斜率為
為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)的直線
與橢圓
相交于
兩點(diǎn),當(dāng)
的面積最大時(shí),求直線
的方程.
【答案】(1);(2)
.
【解析】試題分析:(1)設(shè)出F,由直線AF的斜率為,求得c,結(jié)合離心率求得a,再由隱含條件求得b,則橢圓方程可求;
(2)當(dāng)l⊥x軸時(shí),不合題意;當(dāng)直線l斜率存在時(shí),設(shè)直線l:y=kx-2,聯(lián)立直線方程和橢圓方程,由判別式大于0求得k的范圍,再由弦長(zhǎng)公式求得|PQ|,由點(diǎn)到直線的距離公式求得O到l的距離,代入三角形面積公式,化簡(jiǎn)后換元,利用基本不等式求得最值,進(jìn)一步求出k值,則直線方程可求.
試題解析:
(1)設(shè),解得
,又
,
橢圓
.
(2)當(dāng)軸時(shí),不合題意;當(dāng)直線
斜率存在時(shí),設(shè)直線
,聯(lián)立
,得
,由
,得
,即
或
,
,從而
,又點(diǎn)
到直線
的距離
的面積
,設(shè)
,則
,
,當(dāng)且僅當(dāng)
,即
時(shí),等號(hào)成立,且
,此時(shí)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線
是函數(shù)
圖象的一條對(duì)稱軸.
(1)求的值,并求
的解析式;
(2)若關(guān)于的方程
在區(qū)間
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍;
(3)已知函數(shù)的圖象是由
圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,然后再向左平移
個(gè)單位得到,若
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,
(1)當(dāng)時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)討論函數(shù)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)
在
處的切線方程;
(2)若函數(shù)在定義域上具有單調(diào)性,求實(shí)數(shù)
的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在區(qū)間
上有最大值3和最小值
.
(1)求實(shí)數(shù)的值;
(2)設(shè),若不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為評(píng)估新教改對(duì)教學(xué)的影響,挑選了水平相當(dāng)?shù)膬蓚(gè)平行班進(jìn)行對(duì)比試驗(yàn),甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時(shí)間后進(jìn)行水平測(cè)試,成績(jī)結(jié)果全部落在區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖所示,兩個(gè)班人數(shù)均為60人,成績(jī)80分及以上為優(yōu)良.
(1)根據(jù)以上信息填好聯(lián)表,并判斷出有多大的把握認(rèn)為學(xué)生成績(jī)優(yōu)良與班級(jí)有關(guān)?
(2)以班級(jí)分層抽樣,抽取成績(jī)優(yōu)良的5人參加座談,現(xiàn)從5人中隨機(jī)選3人來(lái)作書面發(fā)言,求發(fā)言人至少有2人來(lái)自甲班的概率.
(以下臨界值及公式僅供參考)
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某直三棱柱(側(cè)棱與底面垂直的三棱柱)被削去上底后的直觀圖與三視圖中的側(cè)視圖、俯視圖,在直觀圖中, 是
的中點(diǎn),側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求出該幾何體的體積;
(2)若是
的中點(diǎn),求證:
平面
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線
的參數(shù)方程是
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),若直線
與曲線
交于
,
兩點(diǎn),且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線過(guò)點(diǎn)
,求曲線
在點(diǎn)
處的切線方程;
(2)求函數(shù)在區(qū)間
上的最大值;
(3)若函數(shù)有兩個(gè)不同的零點(diǎn)
,
,求證:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com