日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中點(diǎn),F(xiàn)是CD上的點(diǎn)且DF=
          1
          2
          AB
          ,PH為△PAD中AD邊上的高.
          (Ⅰ)證明:PH⊥平面ABCD;
          (Ⅱ)若PH=1,AD=
          2
          ,F(xiàn)C=1,求三棱錐E-BCF的體積.
          分析:(Ⅰ)因?yàn)锳B⊥平面PAD,所以PH⊥AB,因?yàn)镻H為△PAD中AD邊上的高,所以PH⊥AD,由此能夠證明PH⊥平面ABCD.
          (Ⅱ)連接BH,取BH中點(diǎn)G,連接EG,因?yàn)镋是PB的中點(diǎn),所以EG∥PH,因?yàn)镻H⊥平面ABCD,所以EG⊥平面ABCD,由此能夠求出三棱錐E-BCF的體積.
          解答:(Ⅰ)證明:∵AB⊥平面PAD,
          ∴PH⊥AB,
          ∵PH為△PAD中AD邊上的高,
          ∴PH⊥AD,
          又∵AB∩AD=A,
          ∴PH⊥平面ABCD.
          (Ⅱ)解:如圖,連接BH,取BH中點(diǎn)G,連接EG,
          ∵E是PB的中點(diǎn),
          ∴EG∥PH,
          ∵PH⊥平面ABCD,
          ∴EG⊥平面ABCD,
          則EG=
          1
          2
          PH=
          1
          2

          ∴VE-BCF=
          1
          3
          S△BCF•EG=
          1
          3
          1
          2
          •FC•AD•EG=
          2
          12
          點(diǎn)評(píng):本題考查直線與平面垂直的證明,求三棱錐的體積,解題時(shí)要認(rèn)真審題,注意合理地化立體幾何問(wèn)題為平面幾何問(wèn)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,M為PC上一點(diǎn),且PA∥平面BDM.
          (1)求證:M為PC中點(diǎn);
          (2)求平面ABCD與平面PBC所成的銳二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30°的角.
          (1)求證:CM∥平面PAD;
          (2)點(diǎn)C到平面PAD的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•廣東)如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE.
          (1)證明:BD⊥平面PAC;
          (2)若PA=1,AD=2,求二面角B-PC-A的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是正方形,PD⊥平面ABCD,E為PC的中點(diǎn).
          求證:
          (1)PA∥平面BDE;
          (2)AC⊥平面PBD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD=2AB=2,M為PD上的點(diǎn),若PD⊥平面MAB
          (I)求證:M為PD的中點(diǎn);
          (II)求二面角A-BM-C的大小.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案