設(shè)分別為橢圓
的左、右頂點(diǎn),橢圓長半軸的長等于焦距,且
為它的右準(zhǔn)線。
(Ⅰ)、求橢圓的方程;
(Ⅱ)、設(shè)為右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線
分別與橢圓相交于異于
的點(diǎn)
,證明點(diǎn)
在以
為直徑的圓內(nèi)。
(此題不要求在答題卡上畫圖)
解:(I)依題意得解得
從而
,
故橢圓方程為。
(II)解法1:由(I)得A(-2,0),B(2,0)。設(shè)。
點(diǎn)在橢圓上,
。
又點(diǎn)異于頂點(diǎn)
,
由三點(diǎn)共線可得
.
從面
將①式代入②式化簡得
,
.于是
為銳角,從而
為鈍角,故點(diǎn)
在以
為直徑的圓內(nèi).
解法2:由(Ⅰ)得A(-2,0),B(2,0).設(shè)P(4,)(
0),M(
,
),N(
,
),則直線AP的方程為
,直線BP的方程為
。
點(diǎn)M、N分別在直線AP、BP上,
,
.從而
.③
聯(lián)立消去
得
.
是方程得兩根,∴(-2).
,即
. ④
又. ⑤
于是由③、④式代入⑤式化簡可得
.
N點(diǎn)在橢圓上,且異于頂點(diǎn)A、B,
.
又,
, 從而
.
故為鈍角,即點(diǎn)B在以MN為直徑的圓內(nèi).
解法3:由(Ⅰ)得A(-2,0),B(2,0).設(shè)M(,
),N(
,
),則-2<
<2 , -2<
<2.又MN的中點(diǎn)Q的坐標(biāo)為
,
化簡得. ⑥
直線AP的方程為,直線BP的方程為
.
點(diǎn)P在準(zhǔn)線
上,
,即
. ⑦
又M點(diǎn)在橢圓上,
,即
⑧
于是將⑦、⑧式化簡可得.
從而B在以MN為直徑的圓內(nèi).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)分別為橢圓
的左、右焦點(diǎn),點(diǎn)A,B在橢圓上,若
,
則點(diǎn)A的坐標(biāo)是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省武漢市武昌區(qū)高三五月調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)分別為橢圓
的左、右頂點(diǎn),若在橢圓上存在異于
的點(diǎn)
,使得
,其中
為坐標(biāo)原點(diǎn),則橢圓的離心率
的取值范圍是
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第四次月考理科數(shù)學(xué)試卷 題型:解答題
設(shè),
分別為橢圓
的左、右焦點(diǎn),過
的直線
與橢圓
相交于
,
兩點(diǎn),直線
的傾斜角為
,
到直線
的距離為
.
(1)求橢圓的焦距;
(2)如果,求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012年湖南省高二上(12月)月考試題數(shù)學(xué) 題型:填空題
設(shè)分別為橢圓
的左、右焦點(diǎn),點(diǎn)
在橢圓上,若
;則點(diǎn)
的坐標(biāo)是
______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷十二文科數(shù)學(xué) 題型:解答題
設(shè)分別為橢圓
的左、右頂點(diǎn),橢圓長半軸的長等于焦距,且
為它的右準(zhǔn)線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線
分別與橢圓相交于異于
的點(diǎn)
,證明點(diǎn)
在以
為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com