日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)k∈R,函數(shù)f(x)=ex-(1+x+kx2)(x>0).
          (Ⅰ)若k=1,試求函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的極小值;
          (Ⅱ)若對(duì)任意的t>0,存在s>0,使得當(dāng)x∈(0,s)時(shí),都有f(x)<tx2,求實(shí)數(shù)k的取值范圍.
          分析:(Ⅰ)先求f(x)的導(dǎo)數(shù),再求f'(x)的導(dǎo)數(shù),從而確定f'(x)的單調(diào)性,由此可求導(dǎo)數(shù)f'(x)的極小值;
          (Ⅱ)解法1:對(duì)任意的t>0,記函數(shù)Ft(x)=f(x)-tx2=ex-[1+x+(k+t)x2](x>0),分類(lèi)討論,確定函數(shù)F't(x)在(0,s)上的單調(diào)性,從而可得Ft(x)在(0,s)上的單調(diào)性,由此可求實(shí)數(shù)k的取值范圍;
          解法2:分離參數(shù)可得
          f(x)
          x2
          <t
          成立,即
          f(x)
          x2
          ≤0
          成立,則存在s>0,使得當(dāng)x∈(0,s)時(shí),f(x)≤0成立,求導(dǎo)函數(shù),可得當(dāng)x∈(0,s)時(shí),f′′(x)≤0成立,由此可求實(shí)數(shù)k的取值范圍.
          解答:解:(Ⅰ)當(dāng)k=1時(shí),函數(shù)f(x)=ex-(1+x+x2)(x>0),
          則f(x)的導(dǎo)數(shù)f'(x)=ex-(1+2x),f'(x)的導(dǎo)數(shù)f''(x)=ex-2.…(2分)
          令f''(x)=ex-2=0,可得x=ln2,
          當(dāng)0<x<ln2時(shí),f''(x)<0;當(dāng)x>ln2時(shí),f''(x)>0,
          從而f'(x)在(0,ln2)內(nèi)遞減,在(ln2,+∞)內(nèi)遞增.…(4分)
          故導(dǎo)數(shù)f'(x)的極小值為f'(ln2)=1-2ln2…(6分)
          (Ⅱ)解法1:對(duì)任意的t>0,記函數(shù)Ft(x)=f(x)-tx2=ex-[1+x+(k+t)x2](x>0),
          根據(jù)題意,存在s>0,使得當(dāng)x∈(0,s)時(shí),F(xiàn)t(x)<0.
          則Ft(x)的導(dǎo)數(shù)Ft(x)=ex-[1+2(k+t)x],F(xiàn)'t(x)的導(dǎo)數(shù)Ft′′(x)=ex-2(k+t)…(9分)
          ①若Ft′′(0)≥0,因Ft′′(x)在(0,s)上遞增,故當(dāng)x∈(0,s)時(shí),Ft′′(x)Ft′′(0)≥0,
          于是F't(x)在(0,s)上遞增,則當(dāng)x∈(0,s)時(shí),F(xiàn)'t(x)>F't(0)=0,從而Ft(x)在(0,s)上遞增,故當(dāng)x∈(0,s)時(shí),F(xiàn)t(x)>Ft(0)=0,與已知矛盾 …(11分)
          ②若Ft′′(0)<0,注意到Ft′′(x)在[0,s)上連續(xù)且遞增,故存在s>0,使得當(dāng)x∈(0,s)Ft′′(x)<0,從而F't(x)在(0,s)上遞減,于是當(dāng)x∈(0,s)時(shí),F(xiàn)'t(x)<F't(0)=0,
          因此Ft(x)在(0,s)上遞減,故當(dāng)x∈(0,s)時(shí),F(xiàn)t(x)<Ft(0)=0,滿足已知條件…(13分)
          綜上所述,對(duì)任意的t>0,都有Ft′′(0)<0,即1-2(k+t)<0,亦即k>
          1
          2
          -t
          ,
          再由t的任意性,得k≥
          1
          2
          ,經(jīng)檢驗(yàn)k=
          1
          2
          不滿足條件,所以k>
          1
          2
          …(15分)
          解法2:由題意知,對(duì)任意的t>0,存在s>0,使得當(dāng)x∈(0,s)時(shí),都有
          f(x)
          x2
          <t
          成立,即
          f(x)
          x2
          ≤0
          成立,則存在s>0,使得當(dāng)x∈(0,s)時(shí),f(x)≤0成立,
          又f(0)=0,則存在s0>0,使得當(dāng)x∈(0,s0)時(shí),f(x)為減函數(shù),即當(dāng)x∈(0,s0)時(shí)使f'(x)=ex-1-2kx≤0成立,
          又f'(0)=0,故存在s0>s>0,使得當(dāng)x∈(0,s)時(shí)f'(x)為減函數(shù),
          則當(dāng)x∈(0,s)時(shí)f′′(x)≤0成立,即ex-2k≤0,得k≥
          ex
          2
          1
          2
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,求導(dǎo)數(shù),確定函數(shù)的單調(diào)性是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)k∈R,函數(shù)f(x)=(x2+2x+k)ex的圖象在x=0處的切線過(guò)點(diǎn)(1,4).
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)k∈R,函數(shù)f(x)=ex-(1+x+kx2)(x>0).
          (Ⅰ)若k=1,試求函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的極小值;
          (Ⅱ)若對(duì)任意的t>0,存在s>0,使得當(dāng)x∈(0,s)時(shí),都有f(x)<tx2,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)k∈R,函數(shù)f(x)=ex-(1+x+kx2)(x>0).
          (Ⅰ)若k=1,試求函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的極小值;
          (Ⅱ)若對(duì)任意的t>0,存在s>0,使得當(dāng)x∈(0,s)時(shí),都有f(x)<tx2,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013年浙江省高考數(shù)學(xué)仿真模擬試卷5(理科)(解析版) 題型:解答題

          設(shè)k∈R,函數(shù)f(x)=ex-(1+x+kx2)(x>0).
          (Ⅰ)若k=1,試求函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的極小值;
          (Ⅱ)若對(duì)任意的t>0,存在s>0,使得當(dāng)x∈(0,s)時(shí),都有f(x)<tx2,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案