日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若對任意x∈A,y∈B,(A、B?R)有唯一確定的f(x,y)與之對應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”:
          (1)非負性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時取等號;
          (2)對稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
          今給出四個二元函數(shù):①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
          x-y
          ;④f(x,y)=sin(x-y).
          能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號是( 。
          A、①B、②C、③D、④
          分析:利用新定義的三個條件,若有一個不滿足,即不是“關(guān)于的x、y的廣義“距離”的函數(shù)”.分別進行判斷即可得到結(jié)論.
          解答:解:①對于函數(shù)f(x,y)=x2+y2:滿足非負性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時取等號;滿足對稱性:f(x,y)=f(y,x);
          ∵f(x,z)+f(z,y)=x2+z2+z2+y2≥x2+y2=f(x,y)對任意的實數(shù)z均成立,因此滿足三角形不等式:f(x,y)≤f(x,z)+f(z,y).
          可知f(x,y)能夠成為關(guān)于的x、y的廣義“距離”的函數(shù).∴①成立.
          ②若f(x,y)=(x-y)2≥0,但是不僅x=y=0時取等號,x=y≠0也成立,因此不滿足新定義:關(guān)于的x、y的廣義“距離”的函數(shù);∴②不成立.
          ③若f(x,y)=
          x-y
          ;則不滿足f(x,y)=f(y,x),∴③不成立.
          ④若f(x,y)=sin(x-y).則不滿足f(x,y)=f(y,x),∴④不成立,
          綜上可知:只有①滿足新定義,能夠成為關(guān)于的x、y的廣義“距離”的函數(shù).
          故選:A.
          點評:本題主要考查新定義的應(yīng)用,根據(jù)函數(shù)的性質(zhì)分別進行判斷,正確理解題意是解決本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”;
          (1)非負性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時取等號;
          (2)對稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
          今給出三個二元函數(shù),請選出所有能夠成為關(guān)于x、y的廣義“距離”的序號:
          ①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
          x-y

          能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若對任意x∈A,y∈B,(A、B⊆R)有唯一確定的f(x,y)與之對應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”:
          (1)非負性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時取等號;
          (2)對稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
          今給出四個二元函數(shù):
          ①f(x,y)=x2+y2;②f(x,y)=(x-y)2f(x,y)=
          x-y
          ;④f(x,y)=sin(x-y).
          能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應(yīng),則稱f(x,y)為關(guān)于x,y的二元函數(shù).
          定義:滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x,y的廣義“距離”:
          (1)非負性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時取等號;
          (2)對稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
          給出三個二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
          x-y

          請選出所有能夠成為關(guān)于x,y的廣義“距離”的序號

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年廣東省華南師大附中高三綜合測試數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”;
          (1)非負性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時取等號;
          (2)對稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
          今給出三個二元函數(shù),請選出所有能夠成為關(guān)于x、y的廣義“距離”的序號:
          ①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③
          能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號是   

          查看答案和解析>>

          同步練習(xí)冊答案