日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線f(x)=ax 2+2在x=1處的切線與2x-y+1=0平行.
          (1)求f(x)的解析式;
          (2)求由曲線y=f(x)與y=3x,x=0,x=2所圍成的平面圖形的面積.
          分析:(1)利用曲線在切點(diǎn)處的導(dǎo)數(shù)為斜率求曲線的切線斜率;利用直線平行它們的斜率相等列方程求解.
          (2)因?yàn)樗髤^(qū)域均為曲邊梯形,所以使用定積分方可求解.
          解答:解:(1)y'=2ax,
          于是切線的斜率k=y'|x=1=2a,∵切線與直線2x-y+1=0平行
          ∴2a=2
          ∴a=1
          故f (x )的解析式f (x )=x 2+2.
          (2)聯(lián)立
          y=x2+2
          y=3x
          ,解得x1=1,x2=2
          ∴S=∫01(x2+2-3x)dx+∫12(3x-x2-2)dx=
          [
          1
          3
          X3+2X-
          3
          2
          X2]
          1
          0
          +
          [
          3
          2
          X2-
          1
          3
          X3-2X]
          2
          1
          =1
          所圍成的平面圖形的面積1.
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義:曲線在切點(diǎn)處的導(dǎo)數(shù)值是切線的斜率以及用定積分求面積,要注意明確被積函數(shù)和積分區(qū)間,屬于基本運(yùn)算.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線f(x)=xn+1(n∈N*)與直線x=1交于點(diǎn)P,若設(shè)曲線y=f(x)在點(diǎn)P處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn,則lgx1+lgx2+…+lgx9的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線f(x)=xcosx+1在點(diǎn)(
          π
          2
          ,1)處的切線與直線ax-y+1=0垂直,則實(shí)數(shù)a=
          2
          π
          2
          π

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線f(x)=xcosx在點(diǎn)(
          π
          2
          ,0)處的切線與直線x-ay+1=0互相垂直,則實(shí)數(shù)a=
          π
          2
          π
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•寧德模擬)已知曲線f(x)=ax+blnx-1在點(diǎn)(1,f(1))處的切線為直線y=0.
          (1)求實(shí)數(shù)a,b的值;
          (2)設(shè)函數(shù)g(x)=
          x2
          2
          -mx+mf(x)
          ,其中m為常數(shù).
          (i)求g(x)的單調(diào)遞增區(qū)間;
          (ii)求證:當(dāng)1<m<3,x∈(1,e)(其中e=2.71828…)時(shí),總有-
          3
          2
          (1+ln3)<g(x)<
          e2
          2
          -2
          成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線f(x)=
          1
          3
          x3-
          a
          2
          x2+bx+c(a≥0)在x=0處的切線方程y=1.
          (1)求實(shí)數(shù)b,c的值;
          (2)若過(guò)點(diǎn)(0,2)可作曲線y=f(x)的三條不同的切線,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案