日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. x=0,x=
          2
          ,y=0和y=cosx
          圍成的封閉圖形面積是
          3
          3
          分析:求由x=0,x=
          2
          ,y=0和y=cosx
          圍成的封閉圖形面積,首先作出余弦函數(shù)y=cosx在[0,
          2
          ]上的圖象,
          由圖象看出封閉圖形有兩部分構(gòu)成,x軸上方的部分直接求余弦函數(shù)在[0,
          π
          2
          ]上的定積分,而x軸下方的是余弦函數(shù)在[
          π
          2
          2
          ]上定積分的負(fù)值.
          解答:解:如圖,

          x=0,x=
          2
          ,y=0和y=cosx
          圍成的封閉圖形面積為:
          π
          2
          0
          cosxdx
          -∫
          2
          π
          2
          cosxdx
          =
          sinx|
          π
          2
          0
          -sinx|
          2
          π
          2
          =sin
          π
          2
          -sin0-(sin
          2
          -sin
          π
          2
          )
          =1+2=3.
          故答案為3.
          點(diǎn)評(píng):本題考查了定積分,考查了微積分基本定理,曲線在x軸下方所圍成的曲邊梯形的面積應(yīng)是函數(shù)在區(qū)間上定積分的負(fù)值,此題為中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•江西模擬)設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:①方程f(x)-x=0有實(shí)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.
          (1)若函數(shù)f(x)為集合M中的任意一個(gè)元素,證明:方程f(x)-x=0只有一個(gè)實(shí)根;
          (2)判斷函數(shù)g(x)=
          x
          2
          -
          lnx
          2
          +3(x>1)
          是否是集合M中的元素,并說(shuō)明理由;
          (3)設(shè)函數(shù)f(x)為集合M中的任意一個(gè)元素,對(duì)于定義域中任意α,β,證明|f(α)-f(β)|≤|α-β|

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:①方程f(x)-x=0有實(shí)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.
          (1)若函數(shù)f(x)為集合M中的任意一個(gè)元素,證明:方程f(x)-x=0只有一個(gè)實(shí)根;
          (2)判斷函數(shù)g(x)=數(shù)學(xué)公式是否是集合M中的元素,并說(shuō)明理由;
          (3)設(shè)函數(shù)f(x)為集合M中的任意一個(gè)元素,對(duì)于定義域中任意α,β,證明|f(α)-f(β)|≤|α-β|

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省紅色六校高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:①方程f(x)-x=0有實(shí)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.
          (1)若函數(shù)f(x)為集合M中的任意一個(gè)元素,證明:方程f(x)-x=0只有一個(gè)實(shí)根;
          (2)判斷函數(shù)g(x)=是否是集合M中的元素,并說(shuō)明理由;
          (3)設(shè)函數(shù)f(x)為集合M中的任意一個(gè)元素,對(duì)于定義域中任意α,β,證明|f(α)-f(β)|≤|α-β|

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問(wèn)利用的定義域是     

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

          第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

          解: (I)的定義域是     ......1分

                        ............. 2分

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

          (II)若對(duì)任意不等式恒成立,

          問(wèn)題等價(jià)于,                   .........5分

          由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

          故也是最小值點(diǎn),所以;            ............6分

          當(dāng)b<1時(shí),;

          當(dāng)時(shí),;

          當(dāng)b>2時(shí),;             ............8分

          問(wèn)題等價(jià)于 ........11分

          解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案