日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=x3-
          92
          x2+6x-a

          (1)對于任意實(shí)數(shù)x,f′(x)≥m在(1,5]恒成立(其中f′(x)表示f(x)的導(dǎo)函數(shù)),求m的最大值;
          (2)若方程f(x)=0在R上有且僅有一個(gè)實(shí)根,求a的取值范圍.
          分析:(1)f′(x)≥m在(1,5]恒成立,等價(jià)于m≤3x2-9x+6在(1,5]恒成立,等價(jià)于m≤(3x2-9x+6)min,根據(jù)二次函數(shù)的性質(zhì)即可求得其最小值;
          (2)結(jié)合圖象,方程f(x)=0在R上有且僅有一個(gè)實(shí)根,等價(jià)于函數(shù)f(x)只有一個(gè)零點(diǎn),利用導(dǎo)數(shù)求出函數(shù)f(x)的極大值、極小值,只需令極大值小于0或極小值大于0即可;
          解答:解:(1)f′(x)=3x2-9x+6,
          f′(x)≥m在(1,5]恒成立,等價(jià)于m≤3x2-9x+6在(1,5]恒成立,
          由f′(x)=3x2-9x+6=3(x-
          3
          2
          )2-
          3
          4
          在[1,5]上的最小值為-
          3
          4
          ,
          所以m≤-
          3
          4
          ,即m的最大值為-
          3
          4

          (2)f′(x)=3x2-9x+6=3(x-1)(x-2),
          當(dāng)x<1或x>2時(shí)f′(x)>0,當(dāng)1<x<2時(shí)f′(x)<0,
          所以函數(shù)f(x)在(-∞,1)和(2,+∞)上單調(diào)遞增,在(1,2)上單調(diào)遞減,
          所以f(x)極大值=f(1)=
          5
          2
          -a,f(x)極小值=f(2)=2-a,
          故當(dāng)f(1)<0或f(2)>0時(shí),方程f(x)=0在R上有且僅有一個(gè)實(shí)根,解得a>
          5
          2
          或a<2,
          所以所求a的取值范圍為:(-∞,2)∪(
          5
          2
          ,+∞).
          點(diǎn)評:本題考查利用導(dǎo)數(shù)求函數(shù)的最值、函數(shù)恒成立及函數(shù)的零點(diǎn),考查轉(zhuǎn)化思想、數(shù)形結(jié)合思想,考查學(xué)生分析解決問題的能力,恒成立問題常轉(zhuǎn)化為函數(shù)最值問題解決,而方程根的個(gè)數(shù)可轉(zhuǎn)化為函數(shù)零點(diǎn)解決.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x3-
          92
          x2+6x-a
          ,
          (1)對于任意實(shí)數(shù)x,f′(x)≥m恒成立,求m的最大值;
          (2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x3-(
          12
          )x-2
          ,則其零點(diǎn)所在區(qū)間為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x3-(
          1
          2
          )x-2
          ,則其零點(diǎn)所在區(qū)間為( 。
          A、(0,1)
          B、(1,2)
          C、(2,3)
          D、(3,4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x3-tx+
          t-1
          2
          ,t∈R

          (I)試討論函數(shù)f(x)在區(qū)間[0,1]上的單調(diào)性:
          (II)求最小的實(shí)數(shù)h,使得對任意x∈[0,1]及任意實(shí)數(shù)t,f(x)+|
          t-1
          2
          |+h≥0
          恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          x
          3
           
          -3a
          x
          2
           
          +3bx
          的圖象與直線12x+y-1=0相切于點(diǎn)(1,-11).
          (I)求a,b的值;
          (II)如果函數(shù)g(x)=f(x)+c有三個(gè)不同零點(diǎn),求c的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案