日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-4:坐標(biāo)系與參數(shù)方程
          已知圓錐曲線
          x=2cosθ
          y=
          3
          sinθ
          (θ為參數(shù))和定點A(0,
          3
          ),F(xiàn)1,F(xiàn)2是左右焦點.
          (Ⅰ)求經(jīng)過點F1垂直于直線AF2的直線L的參數(shù)方程.
          (Ⅱ) 以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程.
          (1)圓錐曲線
          x=2cosθ
          y=
          3
          sinθ
          ,化為普通方程得
          x2
          4
          +
          y2
          3
          =1,
          所以焦點為F1(-1,0),F(xiàn)2(1,0),
          ∴直線AF2的斜率k=
          3
          -0
          0-1
          =-
          3

          因此,經(jīng)過點F1垂直于直線AF2的直線L的斜率k1=-
          1
          k
          =
          3
          3
          ,直線L的傾斜角為30°
          所以直線L的參數(shù)方程是
          x=-1+tcos30°
          y=tsin30°
          ,即
          x=-1+
          3
          2
          t
          y=
          1
          2
          t
          (t為參數(shù)).(6分)
          (2)直線AF2的斜率k=-
          3
          ,傾斜角是120°,
          設(shè)P(ρ,θ)是直線AF2上任一點,
          ρ
          sin60°
          =
          1
          sin(120°-θ)
          ,即ρsin(120°-θ)=sin60°,
          化簡得
          3
          ρcosθ+ρsinθ=
          3

          所以直線AF2的極坐標(biāo)方程是
          3
          ρcosθ+ρsinθ-
          3
          =0.(10分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          [選修4-4:坐標(biāo)系與參數(shù)方程]
          在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
          x=
          1
          2
          t
          y=
          2
          2
          +
          3
          2
          t
          (t為參數(shù)),若以直角坐標(biāo)系xoy 的O點為極點,Ox為極軸,且長度單位相同,建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
          π
          4
          ).直線l與曲線C交于A,B兩點,求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          A.選修4-1:幾何證明選講
          如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC
          交于點D.求證:ED2=EB•EC.
          B.選修4-2:矩陣與變換
          求矩陣M=
          -14
          26
          的特征值和特征向量.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在以O(shè)為極點的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
          π
          4
          )=
          3
          2
          2
          和ρsin2θ=4cosθ,直線l與曲線C交于點.A,B,C,求線段AB的長.
          D.選修4-5:不等式選講
          對于實數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•遼寧)選修4-4:坐標(biāo)系與參數(shù)方程
          在直角坐標(biāo)系xoy中以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-
          π
          4
          )=2
          2

          (Ⅰ)求C1與C2交點的極坐標(biāo);
          (Ⅱ)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為
          x=t3+a
          y=
          b
          2
          t3+1
          (t∈R為參數(shù)),求a,b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選修4-4:
          坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系x0y中,曲線C1為x=acosφ,y=sinφ(1<a<6,φ為參數(shù)).
          在以0為原點,x軸正半軸為極軸的極坐標(biāo)中,曲線C2的方程為ρ=6cosθ,射線ι為θ=α,ι與C1的交點為A,ι與C2除極點外的一個交點為B.當(dāng)α=0時,|AB|=4.
          (1)求C1,C2的直角坐標(biāo)方程;
          (2)若過點P(1,0)且斜率為
          3
          的直線m與曲線C1交于D、E兩點,求|PD|與|PE|差的絕對值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•晉中三模)選修4-4:坐標(biāo)系與參數(shù)方程選講
          在直角坐標(biāo)系xoy中,曲線c1的參數(shù)方程為:
          x=2cosθ
          y=2sinθ
          (θ為參數(shù)),把曲線c1上所有點的縱坐標(biāo)壓縮為原來的一半得到曲線c2,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
          2
          ρcos(θ-
          π
          4
          )=4

          (1)求曲線c2的普通方程,并指明曲線類型;
          (2)過(1,0)點與l垂直的直線l1與曲線c2相交與A、B兩點,求弦AB的長.

          查看答案和解析>>

          同步練習(xí)冊答案