日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)y=f(x)(x∈R)的導(dǎo)函數(shù)為f′(x),且f′(x)<f(x),則下列成立的是( 。
          分析:由f′(x)<f(x),得f′(x)-f(x)<0,然后構(gòu)造函數(shù)F(x)=
          f(x)
          ex
          ,利用導(dǎo)數(shù)研究函數(shù)F(x)=
          f(x)
          ex
          的單調(diào)性,得出選項(xiàng).
          解答:解:因?yàn)閒′(x)<f(x),所以得f′(x)-f(x)<0.
          構(gòu)造函數(shù)F(x)=
          f(x)
          ex
          ,則F′(x)=
          f′(x)ex-f(x)ex
          (ex)2
          =
          f′(x)-f(x)
          ex
          ,
          因?yàn)閒′(x)-f(x)<0,ex>0,
          所以F'(x)<0,即函數(shù)在定義域上單調(diào)遞減,所以
          f(2)
          e2
          f(0)
          e0
          f(-1)
          e-1
          ,
          即e-2f(2)<f(0)<ef(-1).
          故選D.
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系.構(gòu)造函數(shù)F(x)=
          f(x)
          ex
          是解決這類題目的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          13、設(shè)函數(shù)y=f(x)存在反函數(shù)y=f-1(x),且函數(shù)y=x-f(x)的圖象過點(diǎn)(1,2),則函數(shù)y=f-1(x)-x的圖象一定過點(diǎn)
          (-1,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)是定義在R+上的函數(shù),并且滿足下面三個(gè)條件:①對(duì)任意正數(shù)x,y 都有f(xy)=f(x)+f(y);②當(dāng)x>1時(shí),f(x)<0;③f(3)=-1.
          (1)求f(1),f(
          19
          )的值;
          (2)證明:f(x)在R+上是減函數(shù);
          (3)如果不等式分f(x)+f(2-x)<2成立,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù)是y=f′(x),稱εyx=f′(x)•
          x
          y
          為函數(shù)f(x)的彈性函數(shù).
          函數(shù)f(x)=2e3x彈性函數(shù)為
          3x
          3x
          ;若函數(shù)f1(x)與f2(x)的彈性函數(shù)分別為εf 1xεf 2x,則y=f1(x)+f2(x)(f1(x)+f2(x)≠0)的彈性函數(shù)為
           f1(x)ef1x+f2(x)ef2x  
          f1(x)+f2(x)
           f1(x)ef1x+f2(x)ef2x  
          f1(x)+f2(x)

          (用εf 1x,εf 2x,f1(x)與f2(x)表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對(duì)于給定的正數(shù)K,定義函數(shù)fK(x)=
          f(x),f(x)≤k
          k,f(x)>k
          ,取函數(shù)f(x)=2-x-e-x,若對(duì)任意的x∈(-∞,+∞),恒有fK(x)=f(x),則K的最小值為
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義.對(duì)于給定的正數(shù)K,定義函數(shù)fk(x)=
          f(x),f(x)≥K
          K,f(x)<K
          ,取函數(shù)f(x)=2+x+e-x.若對(duì)任意的x∈(+∞,-∞),恒有fk(x)=f(x),則( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案