日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分12分)如圖,已知, 四邊形是梯形,, ,, 中點(diǎn)。

          (1)求證:∥ 平面;

          (2)求異面直線所成角的余弦值。

           

           

           

           

          【答案】

          (1)證明: CE∥面PAB. (6分)

          (2) (12分

          【解析】(1)證明:取PA中點(diǎn)F,連結(jié)EF,BF,

          ∵E為PD中點(diǎn),∴EF∥AD,且EF=AD,

          又BC∥AD,BC=AD,∴EF∥BC,EF=BC,

          ∴四邊形BCEF為平行四邊形,∴CE∥BF,

          ∵CE面PAB, BF面PAB,∴CE∥面PAB. (6分)

          (2)由(1)CE∥BF,

          ∴∠FBA(或其補(bǔ)角)即為CE與AB所成角,

          設(shè)PA=AB=,則在RtBAF中,AF=,BF=,∴cosFBA=,∴CE與AB所成角的余弦值為(12分

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分12分)

          如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. 的中點(diǎn).

          (1)當(dāng)時,求平面與平面的夾角的余弦值;

          (2)當(dāng)為何值時,在棱上存在點(diǎn),使平面?

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點(diǎn),中點(diǎn),上一個動點(diǎn).

          (Ⅰ)確定點(diǎn)的位置,使得;

          (Ⅱ)當(dāng)時,求二面角的平

          面角余弦值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林中學(xué)高三7月月考試題理科數(shù)學(xué) 題型:解答題

          (本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).

           ⑴求異面直線PD與AE所成角的大小;

           ⑵求證:EF⊥平面PBC ;

           ⑶求二面角F—PC—B的大。.

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題

           

          (本題滿分12分)

          如圖3,在圓錐中,已知的直徑的中點(diǎn).

          (I)證明:

          (II)求直線和平面所成角的正弦值.

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題

          (本題滿分12分)

          如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點(diǎn),SA=SB=SC。

             (1)求證:BC⊥平面SDE;

             (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

           

          查看答案和解析>>

          同步練習(xí)冊答案