日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax3-12x2+9x+2,若f(x)在x=1處的切線斜率為-3
          (Ⅰ)求f(x)的解析式及單調(diào)區(qū)間;
          (Ⅱ)若對(duì)任意x∈[0,2]都有f(t)≥t2-2t-1成立,求實(shí)數(shù)t的取值范圍.
          【答案】分析:(Ⅰ)先求導(dǎo)數(shù)f′(x)<0,以及導(dǎo)數(shù)的幾何意義知在x=1處的導(dǎo)數(shù)等于切線的斜率,切點(diǎn)在函數(shù)f(x)的圖象上,建立方程組,解之即可求出函數(shù)f(x)的解析式.再根據(jù)f′(x)>0求得的區(qū)間是單調(diào)增區(qū)間,f′(x)<0求得的區(qū)間是單調(diào)減區(qū)間.
          (Ⅱ)先由(Ⅰ)可f(x)的極大值,從而可求得f(x)[0,2]上的最小值2,f(x)≥t2-2t-1在x∈[0,2]上恒成立,等價(jià)于t2-2t-1≤2,即可求得t的取值范圍.
          解答:解:(Ⅰ)求導(dǎo)函數(shù)f′(x)=3ax2-24x+9
          ∵f(x)在x=1處的切線斜率為-3
          ∴f′(1)=2a-24+9=-3,∴a=4
          ∴f(x)=4x3-12x2+9x+2
          ∴f′(x)=12x2-24x+93(2x-3)(2x-1),
          令f′(x)>0得x>或x<;f′(x)<0得 <x<,
          ∴f(x)的單調(diào)增區(qū)間( ,+∞),(-∞,),
          f(x)的單調(diào)減區(qū)間(
          (Ⅱ)由(Ⅰ)可f(x)的極大值f( )=2,
          ∵f(0)=2,f(2)=4,
          ∴f(x)[0,2]上的最小值2,
          f(x)≥t2-2t-1在x∈[0,2]上恒成立,等價(jià)于t2-2t-1≤2,
          ∴t2-2t-3≤0,
          解得-1≤t≤3.
          點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用等基礎(chǔ)題知識(shí),考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力.利用導(dǎo)數(shù)研究函數(shù)極值的能力,函數(shù)恒成立的條件.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案