已知定點(diǎn)A(1,0),B (2,0) .動(dòng)點(diǎn)M滿足,
(1)求點(diǎn)M的軌跡C;
(2)若過點(diǎn)B的直線l(斜率不等于零)與(1)中的軌跡C交于不同的兩點(diǎn)E、F
(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
(1)(2)(
,1)
解析試題分析:(1)先對原函數(shù)求導(dǎo),然后求出斜率,再利用 進(jìn)行整理即可.
(2)先設(shè)方程為
與
聯(lián)立,結(jié)合根與系數(shù)的關(guān)系以及判別式得到
再由
得,即可
(1)由得
, ∴
.∴直線
的斜率為
,
故的方程為
,∴點(diǎn)A的坐標(biāo)為(1,0). (2分)
設(shè),則
(1,0),
,
,由
得,整理,得
. (4分)
(2)方法一:如圖,由題意知的斜率存在且不為零,設(shè)
方程為
①,將①代入
,整理,得
,設(shè)
,
,則
②
得
(7分)
令, 則
,由此可得
,
,且
.∴
由②知 ,
.
∴, (10分)
∵,∴
,解得
且
(12分)
又∵, ∴
,
∴△OBE與△OBF面積之比的取值范圍是(,1). (13分)
方法二:如圖,由題意知l’的斜率存在且不為零,設(shè)l’ 方程為 ①,將①代入
,整理,得
,設(shè)
,
,則
② ;
(7分)
令, 則
,由此可得
,
,且
.
∴ &n
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓 的離心率為
,過
的左焦點(diǎn)
的直線
被圓
截得的弦長為
.
(1)求橢圓的方程;
(2)設(shè)的右焦點(diǎn)為
,在圓
上是否存在點(diǎn)
,滿足
,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點(diǎn)為
,
為上頂點(diǎn),
為坐標(biāo)原點(diǎn),若△
的面積為
,且橢圓的離心率為
.
(1)求橢圓的方程;
(2)是否存在直線交橢圓于
,
兩點(diǎn), 且使點(diǎn)
為△
的垂心?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的焦點(diǎn)在
軸上,
分別是橢圓的左、右焦點(diǎn),點(diǎn)
是橢圓在第一象限內(nèi)的點(diǎn),直線
交
軸于點(diǎn)
,
(1)當(dāng)時(shí),
(1)若橢圓的離心率為
,求橢圓
的方程;
(2)當(dāng)點(diǎn)P在直線上時(shí),求直線
與
的夾角;
(2) 當(dāng)時(shí),若總有
,猜想:當(dāng)
變化時(shí),點(diǎn)
是否在某定直線上,若是寫出該直線方程(不必求解過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:(x-4)2+(y-m)2=16(m∈N*),直線4x-3y-16=0過橢圓E:+
=1(a>b>0)的右焦點(diǎn),且被圓C所截得的弦長為
,點(diǎn)A(3,1)在橢圓E上.
(1)求m的值及橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求·
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是
.
(1)若橢圓C上一動(dòng)點(diǎn)滿足
,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長為
,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)
的直線的最短距離
.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓經(jīng)過點(diǎn)
,離心率
,直線
與橢圓交于
,
兩點(diǎn),向量
,
,且
.
(1)求橢圓的方程;
(2)當(dāng)直線過橢圓的焦點(diǎn)
(
為半焦距)時(shí),求直線
的斜率
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知點(diǎn)M是拋物線y2=4x上的一點(diǎn),F為拋物線的焦點(diǎn),A在圓C:(x-4)2+(y-1)2=1上,則|MA|+|MF|的最小值為________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com