日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,AF=2,CE=3,BD=1,O為BC的中點(diǎn)。
          (1) 求證:AO∥平面DEF;
          (2) 求證:平面DEF⊥平面BCED;
          (3) 求平面DEF與平面ABC相交所成銳角二面角的余弦值。

          解:(1)取DE的中點(diǎn)G,建系如圖,則A(0,,0)、B(0,-1,0)、C(1,0,0)、 D(-1,0,1),E(1,0,3)、F(0,,2)、G(0,0,2),
          =(2,02),=(1,,1),
          設(shè)平面DEF的一法向量=(x,y,z),
          ,不妨取x=1,則y=0,z=-1,
          =(1,0,-1),平面ABC的一法向量=(0,0,1),=(0,,0),
          =0,
          ,
          又OA平面DEF,
          ∴OA//平面DEF;
          (2)顯然,平面BCED的一法向量為=(0,1,0),=0,
          ∴平面DEF⊥平面BCED;
          (3)由(1)知平面DEF的一法向量=(1,0,-1),平面ABC的一法向量=(0,0,1),
          cos<>=
          ∴求平面DEF與平面ABC相交所成銳角二面角的余弦值為。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,BD=1,AF=2,CE=3,O為AB的中點(diǎn).
          (Ⅰ)求平面DEF與平面ABC相交所成銳角二面角的余弦值;
          (Ⅱ)在DE上是否存在一點(diǎn)P,使CP⊥平面DEF?如果存在,求出DP的長(zhǎng);若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          5、如圖所示的幾何體是由一個(gè)正三棱錐P-ABC與正三棱柱ABC-A1B1C1組合而成,現(xiàn)用3種不同顏色對(duì)這個(gè)幾何體的表面染色(底面A1B1C1不涂色),要求相鄰的面均不同色,則不同的染色方案共有( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示的幾何體是由以正三角形ABC為底面的直棱柱被平面 DEF所截而得.AB=2,BD=1,CE=3,AF=a,O為AB的中點(diǎn).
          (1)當(dāng)a=4時(shí),求平面DEF與平面ABC的夾角的余弦值;
          (2)當(dāng)a為何值時(shí),在棱DE上存在點(diǎn)P,使CP⊥平面DEF?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥
          平面ABC,AB=2,AF=2,CE=3,BD=1,O為BC的中點(diǎn).
          (1)求證:AO∥平面DEF;
          (2)求證:平面DEF⊥平面BCED;
          (3)求平面DEF與平面ABC相交所成銳角二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,BD=1,AF=2,CE=3,O為AB的中點(diǎn).
          (1)求證:OC⊥DF;
          (2)試問(wèn)線段CE上是否存在一點(diǎn)P,使得OP∥平面DEF?若存在,求出CP的長(zhǎng)度,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案