【題目】已知曲線上的點到
的距離比它到直線
的距離少3.
(1)求曲線的方程;
(2)過點且斜率為
的直線
交曲線
于
,
兩點,交圓
于
,
兩點,
,
在
軸上方,過點
,
分別作曲線
的切線
,
,
,求
與
的面積的積的取值范圍.
【答案】(1);(2)
.
【解析】
(1)利用拋物線的定義即可求解;
(2)設(shè)出方程,
,
點到坐標,
與
聯(lián)立,根據(jù)韋達定理求出
和
,再利用導(dǎo)數(shù)及點斜式方程,求出
,
的方程,聯(lián)立求出
點坐標,借助點到直線距離、拋物線定義及三角形面積的求法,即可得解.
(1)因為曲線上的點到
的距離比它到直線
的距離少3,
所以曲線上的點到
的距離和它到直線
的距離相等,
故曲線是
為焦點,
為準線的拋物線,
故.
(2)由題設(shè)知:,則
,
設(shè),
,
在
軸上方,
,
,
,
,
與
聯(lián)立,得
,
則,
,
由,得
時,
,則
;
時,
,則
,
,
,
故,
,
,
聯(lián)立消
,得
,解得
,
將代入
,
方程,
,
,
兩式相加得,解得
,
,
到
的距離
,
,
,
,
與
的面積的積的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左、右焦點分別
、
,過
的直線交雙曲線右支于
,
兩點.
的平分線交
于
,若
,則雙曲線的離心率為( )
A.B.2C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,我國老年人口比例不斷上升,造成日趨嚴峻的人口老齡化問題.2019年10月12日,北京市老齡辦、市老齡協(xié)會聯(lián)合北京師范大學(xué)中國公益研究院發(fā)布《北京市老齡事業(yè)發(fā)展報告(2018)》,相關(guān)數(shù)據(jù)有如下圖表.規(guī)定年齡在15歲至59歲為“勞動年齡”,具備勞動力,60歲及以上年齡為“老年人”,據(jù)統(tǒng)計,2018年底北京市每2.4名勞動力撫養(yǎng)1名老年人.
(Ⅰ)請根據(jù)上述圖表計算北京市2018年戶籍總?cè)丝跀?shù)和北京市2018年的勞動力數(shù);(保留兩位小數(shù))
(Ⅱ)從2014年起,北京市老齡人口與年份呈線性關(guān)系,比照2018年戶籍老年人人口年齡構(gòu)成,預(yù)計到2020年年底,北京市90以上老人達到多少人?(精確到1人)
(附:對于一組數(shù)據(jù)其回歸直線
的斜率和截距的最小二乘法估計分別為:
,
.
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極圖被稱為“中華第一圖”,閃爍著中華文明進程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設(shè)圓O:,則下列說法中正確的是( )
A.函數(shù)是圓O的一個太極函數(shù)
B.圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)
C.函數(shù)是圓O的一個太極函數(shù)
D.函數(shù)的圖象關(guān)于原點對稱是
為圓O的太極函數(shù)的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當時,求函數(shù)
的最大值;
(2)令其圖象上任意一點
處切線的斜率
恒成立,求實數(shù)
的取值范圍;
(3)當,
,方程
有唯一實數(shù)解,求正數(shù)
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點為坐標原點O,對稱軸為軸,其準線為
.
(1)求拋物線C的方程;
(2)設(shè)直線,對任意的
拋物線C上都存在四個點到直線l的距離為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐C﹣ABNM中,四邊形ABNM的邊長均為2,△ABC為正三角形,MB,MB⊥NC,E,F分別為MN,AC中點.
(Ⅰ)證明:MB⊥AC;
(Ⅱ)求直線EF與平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知l,m是平面外的兩條不同直線.給出下列三個論斷:
①l⊥m;②m∥;③l⊥
.
以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,則三個命題中正確命題的個數(shù)為( )個.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多邊形中(圖1).四邊形
為長方形,
為正三角形,
,
,現(xiàn)以
為折痕將
折起,使點
在平面
內(nèi)的射影恰好是
的中點(圖2).
(1)證明:平面
:
(2)若點在線段
上,且
,求二面角
的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com