日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的長軸長是短軸長的
          3
          倍,F(xiàn)1,F(xiàn)2是它的左,右焦點(diǎn).
          (1)若P∈C,且
          PF1
          PF
          2
          =0
          ,|PF1|•|PF2|=4,求F1、F2的坐標(biāo);
          (2)在(1)的條件下,過動點(diǎn)Q作以F2為圓心、以1為半徑的圓的切線QM(M是切點(diǎn)),且使|QF_|=
          2
          |QM|
          ,求動點(diǎn)Q的軌跡方程.
          分析:(1)依題意知a=
          3
          b
          ,由
          PF1
          PF2
          =0
          ,知|PF1|2+|PF2|2=(2c)2=4(a2-b2)=8b2,由橢圓定義可知|PF1|+|PF2|=2a,(|PF1|+|PF2|)2=8b2+8=4a2,由此能求出F1、F2的坐標(biāo).
          (2)由|QF1| =
          2
          |QM|
          ,知|QF1|2=2|QM|2,由QM是⊙F2的切線,知|QF1|2=2(|QF2|2-1).設(shè)Q(x,y),則(x+2)2+y2=2[(x-2)2+y2-1].由此能求出動點(diǎn)Q的軌跡方程.
          解答:精英家教網(wǎng)解:(1)依題意知a=
          3
          b
          ①(1分)
          PF1
          PF2
          =0
          ∴PF1⊥PF2,
          ∴|PF1|2+|PF2|2=(2c)2=4(a2-b2)=8b2(3分)
          又P∈C,由橢圓定義可知|PF1|+|PF2|=2a,
          (|PF1|+|PF2|)2=8b2+8=4a2②(5分)
          由①②得a2=6,b2=2?c=2.
          ∴F1(-2,0)、F2(2,0)(7分)
          (2)由已知|QF_|=
          2
          |QM|

          即|QF1|2=2|QM|2(9分)
          ∵QM是⊙F2的切線,
          ∴|QM|2=|QF2|2-1
          ∴|QF1|2=2(|QF2|2-1)(11分)
          設(shè)Q(x,y),
          則(x+2)2+y2=2[(x-2)2+y2-1]
          即(x-6)2+y2=34(或x2+y2-12x+2=0)(13分)
          綜上所述,所求動點(diǎn)Q的軌跡方程為:(x-6)2+y2=34(14分)
          點(diǎn)評:本題考查焦點(diǎn)坐標(biāo)和軌跡方程的求法,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          1
          2
          ,且經(jīng)過點(diǎn)P(1,
          3
          2
          )

          (1)求橢圓C的方程;
          (2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的短軸長為2
          3
          ,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
          (1)求橢圓C的方程;
          (2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
          DA
          DB
          ,若λ∈[
          3
          8
          ,
          1
          2
          ],求直線AB的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)經(jīng)過點(diǎn)A(1,
          3
          2
          ),且離心率e=
          3
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•房山區(qū)二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的長軸長是4,離心率為
          1
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)過點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過橢圓C的右頂點(diǎn)A,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的短軸長為2,離心率為
          2
          2
          ,設(shè)過右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
          AP+BQ
          PQ
          ,若直線l的斜率k≥
          3
          ,則λ的取值范圍為
           

          查看答案和解析>>

          同步練習(xí)冊答案