日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標(biāo)不小于零,點M在直線PQ上,且滿足
          (1)當(dāng)點P在y軸上移動時,求點M的軌跡C;
          (2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
          (3)將(1)中的曲線C推廣為橢圓:,并將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解.

          【答案】分析:(1)設(shè)出M的坐標(biāo),利用題意向量的關(guān)系,求得x和y的關(guān)系,進(jìn)而求得M的軌跡C.
          (2)將直線l與l'的方程與軌跡C的方程聯(lián)立,分別求弦長,從而表達(dá)出四邊形ADBE面積S,再利用基本不等式求最小值;
          (3)將直線l與l'的方程與橢圓的方程聯(lián)立,分別求弦長,從而表達(dá)出四邊形ADBE面積S,再利用基本不等式求最小值;
          解答:解:(1)設(shè)M(x,y),P(0,b),Q(a,0)(a≥0),易知,,由題設(shè),得其中a≥0,從而,且x≥0,
          又由已知,得HP⊥PM,
          當(dāng)b≠0時,y≠0,此時,得
          又kPM=kPQ,故,
          ,y2=4x(x≠0),
          當(dāng)b=0時,點P為原點,HP為x軸,PM為y軸,點Q也為原點,從而點M也為原點,因此點M的軌跡C的方程為y2=4x,它表示以原點為頂點,以(1,0)為焦點的拋物線;                                    (4分)
          (2)由題設(shè),可設(shè)直線l的方程為y=k(x-1)(k≠0),直線l'的方程為,(k≠0),又設(shè)A(x1,y1)、B(x2,y2),
          則由,消去x,整理得ky2-4y-4k=0,
          ,同理|DE|=4(1+k2),(7分)
          ,
          當(dāng)且僅當(dāng)k=±1時等號成立,因此四邊形ADBE面積S的最小值為32.
          (9分)
          (3)當(dāng)k≠0時可設(shè)直線l的方程為y=k(x-1),
          ,得(1+2k2)x2-4k2x+2k2-2=0,
          ,,(13分),
          當(dāng)且僅當(dāng)k2=1時等號成立.(17分)
          當(dāng)k=0時,易知,,得,
          故當(dāng)且僅當(dāng)k2=1時四邊形ADBE面積S有最小值.(18分)
          點評:本題的考點是直線與圓錐曲線的綜合運(yùn)用,主要考查了橢圓的應(yīng)用,向量的基本性質(zhì).考查了學(xué)生分析問題和解決問題的能力,考查利用基本不等式求最值問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知點A(
          3
          ,0),B(0,1),圓C是以AB為直徑的圓,直線l:
          x=tcosφ
          y=-1+tsinφ
          ,(t為參數(shù)).
          (1)以坐標(biāo)原點為極點,x軸正半軸為極軸,建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
          (2)過原點O作直線l的垂線,垂足為H,若動點M0滿足2
          OM
          =3
          OH
          ,當(dāng)φ變化時,求點M軌跡的參數(shù)方程,并指出它是什么曲線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•盧灣區(qū)二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標(biāo)不小于零,點M在直線PQ上,且滿足
          HP
          PM
          =0
          ,
          PM
          =-
          3
          2
          MQ

          (1)當(dāng)點P在y軸上移動時,求點M的軌跡C;
          (2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
          (3)(在下列兩題中,任選一題,寫出計算過程,并求出結(jié)果,若同時選做兩題,
          則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
          ①將(1)中的曲線C推廣為橢圓:
          x2
          2
          +y2=1
          ,并
          將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
          ②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
          x2
          a2
          +
          y2
          b2
          =1
          ,并
          將(2)中的定點取為原點,求與(2)相類似的問題的解.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•盧灣區(qū)二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標(biāo)不小于零,點M在直線PQ上,且滿足
          HP
          PM
          =0
          PM
          =-
          3
          2
          MQ

          (1)當(dāng)點P在y軸上移動時,求點M的軌跡C;
          (2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
          (3)將(1)中的曲線C推廣為橢圓:
          x2
          2
          +y2=1
          ,并將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009年上海市盧灣區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標(biāo)不小于零,點M在直線PQ上,且滿足,
          (1)當(dāng)點P在y軸上移動時,求點M的軌跡C;
          (2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
          (3)(在下列兩題中,任選一題,寫出計算過程,并求出結(jié)果,若同時選做兩題,
          則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
          ①將(1)中的曲線C推廣為橢圓:,并
          將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
          ②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:,并
          將(2)中的定點取為原點,求與(2)相類似的問題的解.

          查看答案和解析>>

          同步練習(xí)冊答案