日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】空間幾何體ABCDEF如圖所示.已知面ABCD⊥面ADEF,ABCD為梯形,ADEF為正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G為CE的中點(diǎn). (Ⅰ)求證:BG∥面ADEF;
          (Ⅱ)求證:面DBG⊥面BDF.

          【答案】證明:( I)如圖1,取ED中點(diǎn)H,連接HG、AH, 因?yàn)镚、H分別為EC、ED的中點(diǎn),所以HG∥CD且
          因?yàn)锳B∥CD且
          所以AB∥HG,且AB=HG.
          所以AHGB為平行四邊形,所以AH∥BG;
          因?yàn)锽G面PBC,AH面PBC,所以BG∥面ADEF;

          圖1
          (Ⅱ)如圖2,∵ABCD⊥面ADEF及ED⊥DCED⊥面ADCDED⊥DC.
          取BD中點(diǎn)O,連接OF,OG、DG
          ∵AB⊥AD,CD=4,AB=AD=2,∴BF=DF=DB=2 ,OF⊥BD,OF= ,
          ∵BG=AH= ,DG= EC= ,∴OG⊥BD,OG=
          ∴∠FOG為二面角F﹣BD﹣G的平面角;
          在△OFG中,OF= ,OG= ,F(xiàn)G=
          滿(mǎn)足OF2+OG2=FG2 , ∴∠FOG為直角,
          ∴面DBG⊥面BDF.

          【解析】(Ⅰ)取ED中點(diǎn)H,連接HG、AH,只需證明AH∥BG即可;(Ⅱ)取BD中點(diǎn)O,連接OF,OG、DG,易得∠FOG為二面角F﹣BD﹣G的平面角,解△OFG即可.
          【考點(diǎn)精析】通過(guò)靈活運(yùn)用直線與平面平行的判定和平面與平面垂直的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書(shū)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為4,3,則輸出v的值為(

          A.20
          B.61
          C.183
          D.548

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}是公差不為0的等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,S5=20,a1 , a3 , a7成等比數(shù)列.
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若bn+1=bn+an , 且b1=1,求數(shù)列{ }的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)據(jù)0.7,1,0.8,0.9,1.1的方差是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知平面直角坐標(biāo)系xoy中,點(diǎn)P(1,0),曲線C的參數(shù)方程為 (φ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,傾斜角為α的直線l的極坐標(biāo)方程為ρsin(α﹣θ)=sinα.
          (1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
          (2)若曲線C與直線l交于M,N兩點(diǎn),且 ,求α的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知向量 ,函數(shù) ,若函數(shù)f(x)圖象的兩個(gè)相鄰的對(duì)稱(chēng)軸間的距離為
          (1)求函數(shù)f(x)的單調(diào)增區(qū)間;
          (2)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若△ABC滿(mǎn)足f(A)=1,a=3,BC邊上的中線長(zhǎng)為3,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)的定義域?yàn)镈={x|x≠0},且對(duì)于任意x1 , x2∈D,有f(x1x2)=f(x1)+f(x2).
          (1)求f(1)的值;
          (2)判斷函數(shù)f(x)的奇偶性并證明;
          (3)如果f(4)=3,f(x﹣2)+f(x+1)≤3,且f(x)在(0,+∞)上是增函數(shù),求實(shí)數(shù)x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (a>0,β為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程ρcos(θ﹣ )=
          (Ⅰ)若曲線C與l只有一個(gè)公共點(diǎn),求a的值;
          (Ⅱ)A,B為曲線C上的兩點(diǎn),且∠AOB= ,求△OAB的面積最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,若輸入x=20,則輸出的y的值為(
          A.2
          B.﹣1
          C.﹣
          D.﹣

          查看答案和解析>>

          同步練習(xí)冊(cè)答案