日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,

          在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
          (1)求證:F<0.
          (2)若四邊形ABCD的面積為8,對角線AC的長為2,且·=0,求D2+E2-4F的值.
          (3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點(diǎn)O,G,H是否共線,并說明理由.
          (1)見解析   (2)64  (3) O,G,H三點(diǎn)必定共線,理由見解析
          (1)方法一:由題意,原點(diǎn)O必定在圓M內(nèi),即點(diǎn)(0,0)代入方程x2+y2+Dx+Ey+F=0的左邊所得的值小于0,于是有F<0,即證.
          方法二:由題意,不難發(fā)現(xiàn)A,C兩點(diǎn)分別在x軸正、負(fù)半軸上.設(shè)兩點(diǎn)坐標(biāo)分別為A(a,0),C(c,0),則有ac<0.對于圓的方程x2+y2+Dx+Ey+F=0,當(dāng)y=0時(shí),可得x2+Dx+F=0,其中方程的兩根分別為點(diǎn)A和點(diǎn)C的橫坐標(biāo),于是有xAxC=ac=F.
          因?yàn)閍c<0,故F<0.
          (2)不難發(fā)現(xiàn),對角線互相垂直的四邊形ABCD的面積S=,因?yàn)镾=8,|AC|=2,可得|BD|=8.
          又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040407016371.png" style="vertical-align:middle;" />·=0,所以∠BAD為直角,又因?yàn)樗倪呅问菆AM的內(nèi)接四邊形,故|BD|=2r=8⇒r=4.
          對于方程x2+y2+Dx+Ey+F=0所表示的圓,
          可知+-F=r2,所以D2+E2-4F=4r2=64.
          (3)設(shè)四邊形四個(gè)頂點(diǎn)的坐標(biāo)分別為A(a,0),B(0,b),C(c,0),D(0,d).
          則可得點(diǎn)G的坐標(biāo)為(,),即=(,).
          =(-a,b),且AB⊥OH,故要使G,O,H三點(diǎn)共線,只需證·=0即可.
          ·=,且對于圓M的一般方程x2+y2+Dx+Ey+F=0,
          當(dāng)y=0時(shí)可得x2+Dx+F=0,其中方程的兩根分別為點(diǎn)A和點(diǎn)C的橫坐標(biāo),
          于是有xAxC=ac=F.
          同理,當(dāng)x=0時(shí),可得y2+Ey+F=0,其中方程的兩根分別為點(diǎn)B和點(diǎn)D的縱坐標(biāo),于是有yByD=bd=F.
          所以·==0,即AB⊥OG.
          故O,G,H三點(diǎn)必定共線.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,橢圓C0(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t12,b<t1<a.點(diǎn)A1,A2分別為C0的左,右頂點(diǎn),C1與C0相交于A,B,C,D四點(diǎn).

          (1)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
          (2)設(shè)動圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t12+t22為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知關(guān)于的方程:R.
          (Ⅰ)若方程表示圓,求的取值范圍;
          (Ⅱ)若圓與直線相交于兩點(diǎn),且=,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長的比為3∶1;③圓心到直線l:x-2y=0的距離為,求該圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若☉O:x2+y2=5與☉O1:(x-m)2+y2=20(m∈R)相交于A,B兩點(diǎn),且兩圓在點(diǎn)A處的切線互相垂直,則線段AB的長是   .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點(diǎn)均在第二象限內(nèi),則a的取值范圍為(  )
          A.(-∞,-2)B.(-∞,-1)
          C.(1,+∞)D.(2,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知圓的方程為x2y2-6x-8y=0,設(shè)該圓中過點(diǎn)(3,5)的最長弦和最短弦分別為ACBD,則四邊形ABCD的面積是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          :與圓:的位置關(guān)系是(   )
          A.相交B.外切C.內(nèi)切D.相離

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          方程x2+y2-6x=0表示的圓的圓心坐標(biāo)是________;半徑是__________.

          查看答案和解析>>

          同步練習(xí)冊答案