日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在四棱錐中,底面為平行四邊形, , .

          (Ⅰ)證明: 平面;

          (Ⅱ)求點(diǎn)到平面的距離.

          【答案】(1)詳見解析;(2)

          【解析】試題分析:(Ⅰ)首先利用正弦定理求得,由此可推出,然后利用勾股定理推出,從而使問題得證;(Ⅱ)利用等積法將問題轉(zhuǎn)化為求解即可.

          試題解析:(Ⅰ)證明:在中, ,由已知 , ,

          解得,所以,即,可求得

          中,

          , , ,

          ,∴,

          平面, ,∴平面

          (Ⅱ)由題意可知, 平面,則到面的距離等于到面的距離,

          中,易求,

          ,

          , ,

          ,即,則,

          即點(diǎn)到平面的距離為

          點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型,(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖甲,已知矩形中, 上一點(diǎn),且,垂足為,現(xiàn)將矩形沿對角線折起,得到如圖乙所示的三棱錐.

          (Ⅰ)在圖乙中,若,求的長度;

          (Ⅱ)當(dāng)二面角等于時,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前項(xiàng)n和為Sn , 且3Sn=4an﹣4.又?jǐn)?shù)列{bn}滿足bn=log2a1+log2a2+…+log2an
          (1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
          (2)若 ,求使得不等式 恒成立的實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

          1)求的解析式及單調(diào)遞減區(qū)間;

          2)是否存在常數(shù),使得對于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2 , x∈R,則實(shí)數(shù)a= , b=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=xm ,且f(3)=
          (1)求函數(shù)f(x)的解析式,并判斷函數(shù)f(x)的奇偶性.
          (2)證明函數(shù)f(x)在(0,+∞)上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(Ⅰ)命題“ ”為假命題,求實(shí)數(shù)a的取值范圍;
          (Ⅱ)若“x2+2x﹣8<0”是“x﹣m>0”的充分不必要條件,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于x的不等式4x+x﹣a≤ 在x∈[0, ]上恒成立,則實(shí)數(shù)a的取值范圍是(
          A.(﹣∞,﹣ ]
          B.(0,1]
          C.[﹣ ,1]
          D.[1,+∞)

          查看答案和解析>>

          同步練習(xí)冊答案