日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=log 的圖象關(guān)于原點對稱,其中a為常數(shù).
          (1)求a的值;
          (2)當x∈(1,+∞)時,f(x)+log (x+1)<m恒成立,求實數(shù)m的取值范圍;
          (3)若關(guān)于x的方程f(x)=log (x+k)在[2,3]上有解,求k的取值范圍.

          【答案】
          (1)

          解:∵函數(shù)f(x)的圖象關(guān)于原點對稱,

          ∴函數(shù)f(x)為奇函數(shù),

          ∴f(﹣x)=﹣f(x),

          即log =﹣log = log ,

          解得:a=﹣1或a=1(舍)


          (2)

          解:f(x)+ log (x﹣1)= log + log (x﹣1)= log (1+x),

          x>1時,log (1+x)<﹣1,

          ∵x∈(1,+∞)時,f(x)+ log (x﹣1)<m恒成立,

          ∴m≥﹣1;


          (3)

          解:由(1)得:f(x)= log (x+k),

          即log = log (x+k),

          =x+k,即k= ﹣x+1在[2,3]上有解,

          g(x)= ﹣x+1在[2,3]上遞減,

          g(x)的值域是[﹣1,1],

          ∴k∈[﹣1,1]


          【解析】(1)根據(jù)函數(shù)的奇偶性,求出a的值即可;(2)求出f(x)+ log (x﹣1)= log (1+x),根據(jù)函數(shù)的單調(diào)性求出m的范圍即可;(3)問題轉(zhuǎn)化為k= ﹣x+1在[2,3]上有解,即g(x)= ﹣x+1在[2,3]上遞減,根據(jù)函數(shù)的單調(diào)性求出g(x)的值域,從而求出k的范圍即可.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
          (1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
          (2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A是函數(shù)y=lg(6+5x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集.p:x∈A,q:x∈B.
          (1)若A∩B=,求a的取值范圍;
          (2)若¬p是q的充分不必要條件,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某上市股票在30天內(nèi)每股的交易價格P(元)與時間t(天)組成有序數(shù)對(t,P),點(t,P)落在圖中的兩條線段上(如圖).該股票在30天內(nèi)(包括第30天)的日交易量Q(萬股)與時間t(天)的函數(shù)關(guān)系式為Q=40﹣t(0≤t≤30且t∈N).
          (1)根據(jù)提供的圖象,求出該種股票每股的交易價格P(元)與時間t(天)所滿足的函數(shù)關(guān)系式;
          (2)用y(萬元)表示該股票日交易額(日交易額=日交易量×每股的交易價格),寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾天日交易額最大,最大值為多少.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形垂直于正方形垂直于平面.且

          (1)求三棱錐的體積;

          (2)求證:面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱中, .

          (Ⅰ)證明: ;

          (Ⅱ)平面 平面, ,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在五面體中, , , ,平面平面.

          (1)證明:直線平面;

          (2)已知為棱上的點,試確定點位置,使二面角的大小為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求證:
          (1)BC⊥平面SAC;
          (2)AD⊥平面SBC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:x2+y2﹣2x﹣2ay+a2﹣24=0(a∈R)的圓心在直線2x﹣y=0上.
          (1)求實數(shù)a的值;
          (2)求圓C與直線l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)相交弦長的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案