設(shè)F
1、F
2分別為雙曲線C:

的左、右焦點(diǎn),A為雙曲線的左頂點(diǎn),以F
1F
2為直徑的圓交雙曲線的某條漸近線于M、N兩點(diǎn),且滿足

MAN=120
o,則該雙曲線的離心率為( )

試題分析:連結(jié)NB可得四邊形NBMA是平行四邊形,所以可得

.由直

,OM=c,

可得過點(diǎn)M作x軸的垂線垂足為右頂點(diǎn)B,MB=b,AB

.所以在直角三角形ABM中

.故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓

的長(zhǎng)軸長(zhǎng)為

,點(diǎn)

、

、

為橢圓上的三個(gè)點(diǎn),

為橢圓的右端點(diǎn),

過中心

,且

,

.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)

、

是橢圓上位于直線

同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于

、

),且滿足

,試討論直線

與直線

斜率之間的關(guān)系,并求證直線

的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C的兩焦點(diǎn)分別為

,長(zhǎng)軸長(zhǎng)為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長(zhǎng)度。.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓

+

=1(a>b>0)的左、右焦點(diǎn)分別為F
1,F(xiàn)
2.點(diǎn)P(a,b)滿足|PF
2|=|F
1F
2|.
(1)求橢圓的離心率e;
(2)設(shè)直線PF
2與橢圓相交于A,B兩點(diǎn),若直線PF
2與圓(x+1)
2+

=16相交于M,N兩點(diǎn),且|MN|=

|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在棱長(zhǎng)為

的正方體

中,點(diǎn)

是正方體棱上一點(diǎn)(不包括棱的端點(diǎn)),

,
①若

,則滿足條件的點(diǎn)

的個(gè)數(shù)為
________;
②若滿足

的點(diǎn)

的個(gè)數(shù)為

,則

的取值范圍是
________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(2011•山東)已知雙曲線

和橢圓

有相同的焦點(diǎn),且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為
_________ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線

的焦點(diǎn)恰好與橢圓

的一個(gè)焦點(diǎn)重合,則

( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓

的右焦點(diǎn)為

,橢圓

與

軸正半軸交于

點(diǎn),與

軸正半軸交于

,且

,過點(diǎn)

作直線

交橢圓于不同兩點(diǎn)

,則直線

的斜率的取值范圍是( 。
查看答案和解析>>