日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2且an+1-2=an
          (1)求使不等式Sn<56成立的n的最大值;
          (2)是否存在等比數(shù)列{bn}滿(mǎn)足b1=a1,b2=a3,b3=a9?若存在,則求出數(shù)列{bn}的通項(xiàng)公式;若不存在,則說(shuō)明理由.
          分析:(1)由an-1-2=an,知an-1-an=2,故Sn=2n+2×
          n(n-1)
          2
          =n2+n.由此能求出使不等式Sn<56成立的n的最大值.
          (2)存在存在等比數(shù)列{bn}滿(mǎn)足b1=a1,b2=a3,b3=a9.由an=2n,知a3=6,a9=18,a1=2,則由b1=a1,b2=a3,b3=a9,由此能推導(dǎo)出存在以b1=2為首項(xiàng),公比為3的等比數(shù)列{bn},其通項(xiàng)公式為bn=2•3n-1
          解答:解:(1)∵an-1-2=an
          ∴an-1-an=2,
          即數(shù)列{an}是以2為首項(xiàng),公差為2的等差數(shù)列,
          Sn=2n+2×
          n(n-1)
          2

          =n2+n.
          ∴由Sn<56,得0<n<7,n∈N*
          故使不等式Sn<56成立的n的最大值為6.
          (2)存在存在等比數(shù)列{bn}滿(mǎn)足b1=a1,b2=a3,b3=a9
          由(1)知,an=2n,
          ∴a3=6,a9=18,a1=2,
          則由b1=a1,b2=a3,b3=a9
          b2
          b1
          =
          b3
          b2
          =3
          ,
          即存在以b1=2為首項(xiàng),公比為3的等比數(shù)列{bn},
          其通項(xiàng)公式為bn=2•3n-1
          點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì)和應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
          Tn
          ak
          (n,k∈N+,k≤n),則數(shù)列
          SnTn
          Tn(1)+Tn(2)+…+Tn(n)
          的前n項(xiàng)的和是
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          (用a1和q表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若數(shù)列{an}的通項(xiàng)an=
          1
          pn-q
          ,實(shí)數(shù)p,q滿(mǎn)足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
          (1)求證:當(dāng)n≥2時(shí),pan<an-1
          (2)求證sn
          p
          (p-1)(p-q)
          (1-
          1
          pn
          )
          ;
          (3)若an=
          1
          (2n-1)(2n+1-1)
          ,求證sn
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
          a
          2
          n
          +an
          2
          ,n∈N*,
          (1)求證:{an}是等差數(shù)列;
          (2)若數(shù)列{bn}滿(mǎn)足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
          1
          2
          ,
          1
          3
          ,
          2
          3
          ,
          1
          4
          2
          4
          3
          4
          ,
          1
          5
          ,
          2
          5
          ,
          3
          5
          4
          5
          …,
          1
          n
          2
          n
          ,…,
          n-1
          n
          ,…有如下運(yùn)算和結(jié)論:
          ①a24=
          3
          8

          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
          ③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為T(mén)n=
          n2+n
          4
          ;
          ④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
          5
          7

          其中正確的結(jié)論是
          ①③④
          ①③④
          .(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          給出下列命題:
          ①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
          ②在△ABC中,如果A=60°,a=
          6
          ,b=4
          ,那么滿(mǎn)足條件的△ABC有兩解;
          ③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
          ④設(shè)直線(xiàn)系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線(xiàn)所能?chē)傻恼切蚊娣e都相等.
          其中真命題的序號(hào)是

          查看答案和解析>>

          同步練習(xí)冊(cè)答案