日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知坐標平面上點M(x,y)與兩個定點M1(26,1),M2(2,1)的距離之比等于5.
          (1)求點M的軌跡方程,并說明軌跡是什么圖形;
          (2)記(1)中的軌跡為C,過點A(-2,3)的直線l被C所截得的線段的長為8,求直線l的方程.
          【答案】分析:(1)直接利用距離的比,列出方程即可求點M的軌跡方程,然后說明軌跡是什么圖形;
          (2)設出直線方程,利用圓心到直線的距離,半徑與半弦長滿足的勾股定理,求出直線l的方程.
          解答:解:(1)由題意坐標平面上點M(x,y)與兩個定點M1(26,1),M2(2,1)的距離之比等于5,
          =5.,化簡得x2+y2-2x-2y-23=0.
          即(x-1)2+(y-1)2=25.
          ∴點M的軌跡方程是(x-1)2+(y-1)2=25,
          所求軌跡是以(1,1)為圓心,以5為半徑的圓.
          (2)當直線l的斜率不存在時,過點A(-2,3)的直線l:x=-2,
          此時過點A(-2,3)的直線l被圓所截得的線段的長為:2=8,
          ∴l(xiāng):x=-2符合題意.
          當直線l的斜率存在時,設過點A(-2,3)的直線l的方程為y-3=k(x+2),即kx-y+2k+3=0,
          圓心到l的距離d=
          由題意,得+42=52,解得k=.∴直線l的方程為x-y+=0.即5x-12y+46=0.
          綜上,直線l的方程為x=-2,或5x-12y+46=0.
          點評:本題考查曲線軌跡方程的求法,直線與圓的位置關(guān)系的應用,考查計算能力.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          在yOz平面上,有一點M到三個已知點A(3,l,2),B(4,-2,-2),C(0,5,1)的距離相等,求M的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知坐標平面上點M(x,y)與兩個定點M1(26,1),M2(2,1)的距離之比等于5.
          (1)求點M的軌跡方程,并說明軌跡是什么圖形;
          (2)記(1)中的軌跡為C,過點A(-2,3)的直線l被C所截得的線段的長為8,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:廣東省培正中學2011-2012學年高二第一學期期中考考試數(shù)學理科試題 題型:044

          已知(x,y)(x,y∈R)為平面上點M的坐標.

          (1)設集合P={―4,―3,―2,0},Q={0,1,2},從集合P中隨機取一個數(shù)作為x,從集合Q中隨機取一個數(shù)作為y,求點M在y軸上的概率;

          (2)設x∈[0,3],y∈[0,4],求點M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知坐標平面上點M(x,y)與兩個定點M1(26,1),M2(2,1)的距離之比等于5.
          (1)求點M的軌跡方程,并說明軌跡是什么圖形;
          (2)記(1)中的軌跡為C,過點A(-2,3)的直線l被C所截得的線段的長為8,求直線l的方程.

          查看答案和解析>>

          同步練習冊答案