日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在直角梯形ABCD中,,曲線段.DE上  任一點(diǎn)到A、B兩點(diǎn)的距離之和都相等.

            (Ⅰ) 建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線段DE的方程;

            (Ⅱ) 過(guò)C能否作-條直線與曲線段DE 相交,且所得弦以C為中點(diǎn),如果能,求該弦所在的直線的方程;若不能,說(shuō)明理由.

          解:(Ⅰ)以直線AB為x軸,線段AB的中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系,則A(-2,0),B

              (2,0),.依題意,曲線段DE是以A、B為焦點(diǎn)的橢圓的

              一部分.    …………………………………………….3分

              

              ∴所求方程為.  ………………………6分

          (Ⅱ)設(shè)這樣的直線存在,

          (1)當(dāng)斜率不存在時(shí),

          (2)當(dāng)直線的斜率存在時(shí),其方程為,即

             將其代入

             ……………………9分

              設(shè)弦的端點(diǎn)為,則由

              ,知x1+x2=4,,解得……………l2分

             ∴弦MN所在直線方程為

               驗(yàn)證得知,這時(shí)適合條件,

               故這樣的直線存在;其方程為……… 14分

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=
          3
          ,曲線段DE上任一點(diǎn)到A、B兩點(diǎn)的距離之和都相等.
          (1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線段DE的方程;
          (2)過(guò)C能否作一條直線與曲線段DE相交,且所得弦以C為中點(diǎn),如果能,求該弦所在的直線的方程;若不能,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
          12
          AP=2,D是AP的中點(diǎn),E,F(xiàn),G分別為PC,PD,CB的中點(diǎn),將△PCD沿CD折起,使得PD⊥平面ABCD.
          (1)求證:AP∥平面EFG;
          (2)求二面角G-EF-D的大。
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在直角梯形OABC中,∠COA=∠OAB=
          π2
          ,OA=OS=AB=1,OC=2,點(diǎn)M是棱SB的中點(diǎn),N是OC上的點(diǎn),且ON:NC=1:3.
          (1)求異面直線MN與BC所成的角;
          (2)求MN與面SAB所成的角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在直角梯形ABCP中,AP∥BC,AB⊥AP,AB=BC=3,AP=7,CD⊥AP,現(xiàn)將△PCD沿折線CD折成直二面角P-CD-A,設(shè)E,F(xiàn)分別是PD,BC的中點(diǎn).
          (Ⅰ)求證:EF∥平面PAB;
          (Ⅱ)求直線BE與平面PAB所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•藍(lán)山縣模擬)如圖所示,在直角梯形ABCD中,∠A=90°,∠C=45°,AB=2,AD=1,E是AB中點(diǎn),F(xiàn)是DC上的點(diǎn),且EF∥AD,現(xiàn)以EF為折痕將四邊形AEFD向上折起,使平面AEFD垂直平面EBCF,連AC,DC,BA,BD,BF,

          (1)求證:CB⊥平面DFB;
          (2)求二面角B-AC-D的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案