日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 過點(0,1)且與曲線在點(3,2)處的切線垂直的直線的方程為(   )

          A.   B.   C. D.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          定義F(x,y)=(1+x)y,x,y∈(0,+∞)
          (1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線c1,曲線c1與y軸交于點A(0,m),過坐標原點O作曲線c1的切線,切點為B(n,t)(n>0)設(shè)曲線c1在點A、B之間的曲線段與OA、OB所圍成圖形的面積為S,求S的值;
          (2)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)精英家教網(wǎng)如圖1,OA,OB是某地一個湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋CD上某點M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個跨越水面的三角形觀光平臺MGK.建立如圖2所示的直角坐標系,測得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設(shè)點M的坐標為(s,t),記z=s•t.(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度
          (1)求z的取值范圍;
          (2)試寫出三角形觀光平臺MGK面積S△MGK關(guān)于z的函數(shù)解析式,并求出該面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•淮南二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1,(a>b>0)與雙曲4x2-
          4
          3
          y2=1有相同的焦點,且橢C的離心e=
          1
          2
          ,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A (0,)為圓心,1為半徑的圓相切,又知C的一個焦點與A關(guān)于y = x對稱.

              (1)求雙曲線C的方程;

              (2)若Q是雙曲線線C上的任一點,F1F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;

              (3)設(shè)直線y = mx + 1與雙曲線C的左支交于A、B兩點,另一直線l經(jīng)過M (–2,0)及AB的中點,求直線ly軸上的截距b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2009-2010學年山東省聊城市水城中學高三(上)模塊數(shù)學試卷(理科)(解析版) 題型:解答題

          定義F(x,y)=(1+x)y,x,y∈(0,+∞)
          (1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線c1,曲線c1與y軸交于點A(0,m),過坐標原點O作曲線c1的切線,切點為B(n,t)(n>0)設(shè)曲線c1在點A、B之間的曲線段與OA、OB所圍成圖形的面積為S,求S的值;
          (2)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

          查看答案和解析>>

          同步練習冊答案