在等差數(shù)列{an}中,已知a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n取何值時(shí),Sn取得最大值,并求出它的最大值.
當(dāng)n=12或13時(shí),Sn取得最大值,且最大值為S12= 130.
方法一 ∵a1=20,S10=S15,
∴10×20+d=15×20+
d,
∴d=-. 4分
∴an=20+(n-1)×(-)=-
n+
. 8分
∴a13=0. 10分
即當(dāng)n≤12時(shí),an>0,n≥14時(shí),an<0.
∴當(dāng)n=12或13時(shí),Sn取得最大值,且最大值為
S12=S13=12×20+(-
)=130. 14分
方法二 同方法一求得d=-. 4分
∴Sn=20n+·(-
)
=-n2+
n
=-+
. 8分
∵n∈N+,∴當(dāng)n=12或13時(shí),Sn有最大值,
且最大值為S12=S13=130. 14分
方法三 同方法一得d=-. 4分
又由S10=S15,得a11+a12+a13+a14+a15=0. 8分
∴5a13=0,即a13=0. 10分
∴當(dāng)n=12或13時(shí),Sn有最大值,
且最大值為S12=S13=130. 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
S2010 |
2010 |
S2008 |
2008 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com