日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,在四棱錐中,底面且邊長為的菱形,側(cè)面為正三角形,其所在平面垂直于底面,若的中點,的中點.

          1)求證:平面;

          2)求證:;

          3)在棱上是否存在一點,使平面平面,若存在,確定點的位置;若不存在,說明理由

          【答案】(1)證明見解析(2)證明見解析(3)存在,當(dāng)的中點時,能使平面平面

          【解析】

          1)利用已知可以判定四邊形是平行四邊形,利用平行四邊形的性質(zhì)可以得到線線平行,利用線面平行的判定定理證明出平面;

          2)根據(jù)為正三角形可以得到,再根據(jù)是等邊三角形得到,這樣根據(jù)線面垂直的判定定理可以證明平面,再利用線面垂直的性質(zhì)定理可以證明出;

          3)可以猜想的中點時.根據(jù)已知側(cè)面垂直于底面,可以通過面面垂直的性質(zhì)定理可以得到平面.這樣利用中位線可以證明出平面,這樣證明出猜想是正確的.

          1)由已知,,所以四邊形是平行四邊形..

          平面平面,平面.

          2)連接..是等邊三角形,

          平面..

          3)當(dāng)的中點時,能使平面平面.證明如下、

          平面平面,平面平面,平面,

          平面.連結(jié).的中點,.

          平面.平面,平面平面.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列命題:①等比數(shù)列1,,)的前項和為;②等差數(shù)列中,若,,則該數(shù)列的前13項或14項之和最大;③若等差數(shù)列公差為,則其前項和;④若等比數(shù)列單調(diào)遞增的充要條件是首項,且公比;⑤若數(shù)列滿足,,則.其中正確的是______(把你認(rèn)為正確的命題序號都填上).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直三棱柱中,,,為線段上一點,平面.

          1)求證:中點;

          2)若所成角為,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個不透明的箱子中裝有大小形狀相同的5個小球,其中2個白球標(biāo)號分別為,,3個紅球標(biāo)號分別為,,現(xiàn)從箱子中隨機地一次取出兩個球.

          (1)求取出的兩個球都是白球的概率;

          (2)求取出的兩個球至少有一個是白球的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,是異面直線,外的一點,則下列結(jié)論中正確的是(

          A.有且只有一條直線與都垂直B.有且只有一條直線與,都平行

          C.有且只有一個平面與,都垂直D.有且只有一個平面與,都平行

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,底面是平行四邊形,,側(cè)面底面,, ,,分別為,的中點,過的平面與面交于兩點.

          (1)求證:;

          (2)求證:平面平面;

          (3)設(shè),當(dāng)為何值時四棱錐的體積等于,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知A(﹣2,0),B ,Mx,y)是曲線C上的動點,且直線AMBM的斜率之積等于.

          1)求曲線C方程;

          2)過D2,0)的直線llx軸不垂直)與曲線C交于E,F兩點,點F關(guān)于x軸的對稱點為F,直線EFx軸交于點P,求PEF的面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)求不等式的解集;

          (2)若直線的圖象所圍成的多邊形面積為,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐的底面為邊長為的菱形,中點,連接.

          (Ⅰ)求證:平面平面;

          (Ⅱ)若平面平面,且二面角的余弦值為,求四棱錐的體積.

          查看答案和解析>>

          同步練習(xí)冊答案