日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個命題:
          ①存在一條定直線與所有的圓均相切;
          ②存在一條定直線與所有的圓均相交;
          ③存在一條定直線與所有的圓均不相交;
          ④所有的圓均不經(jīng)過原點.
          其中真命題的代號是
           
          (寫出所有真命題的代號).
          分析:根據(jù)圓的方程找出圓心坐標,發(fā)現(xiàn)滿足條件的所有圓的圓心在一條直線上,所以這條直線與所有的圓都相交,②正確;根據(jù)圖象可知這些圓互相內(nèi)含,不存在一條定直線與所有的圓均相切,不存在一條定直線與所有的圓均不相交,所以①③錯;利用反證法,假設經(jīng)過原點,將(0,0)代入圓的方程,因為左邊為奇數(shù),右邊為偶數(shù),故不存在k使上式成立,假設錯誤,則圓不經(jīng)過原點,④正確.
          解答:解:根據(jù)題意得:圓心(k-1,3k),
          圓心在直線y=3(x+1)上,故存在直線y=3(x+1)與所有圓都相交,選項②正確;
          考慮兩圓的位置關系,
          圓k:圓心(k-1,3k),半徑為
          2
          k2,
          圓k+1:圓心(k-1+1,3(k+1)),即(k,3k+3),半徑為
          2
          (k+1)2,
          兩圓的圓心距d=
          (k-k+1)2+(3k-3k-3)2
          =
          10

          兩圓的半徑之差R-r=
          2
          (k+1)2-
          2
          k2=2
          2
          k+
          2
          ,
          任取k=1或2時,(R-r>d),Ck含于Ck+1之中,選項①錯誤;
          若k取無窮大,則可以認為所有直線都與圓相交,選項③錯誤;
          將(0,0)帶入圓的方程,則有(-k+1)2+9k2=2k4,即10k2-2k+1=2k4(k∈N*),
          因為左邊為奇數(shù),右邊為偶數(shù),故不存在k使上式成立,即所有圓不過原點,選項④正確.
          則真命題的代號是②④.
          故答案為:②④
          點評:本題是一道綜合題,要求學生會將直線的參數(shù)方程化為普通方程,會利用反證法進行證明,會利用數(shù)形結合解決實際問題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:江西 題型:填空題

          設有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個命題:
          ①存在一條定直線與所有的圓均相切;
          ②存在一條定直線與所有的圓均相交;
          ③存在一條定直線與所有的圓均不相交;
          ④所有的圓均不經(jīng)過原點.
          其中真命題的代號是______(寫出所有真命題的代號).

          查看答案和解析>>

          科目:高中數(shù)學 來源:2007-2008學年浙江省寧波市柔石中學高三(上)月考數(shù)學試卷3(解析版) 題型:填空題

          設有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個命題:
          ①存在一條定直線與所有的圓均相切;
          ②存在一條定直線與所有的圓均相交;
          ③存在一條定直線與所有的圓均不相交;
          ④所有的圓均不經(jīng)過原點.
          其中真命題的代號是    (寫出所有真命題的代號).

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年高考數(shù)學小題沖刺訓練(14)(解析版) 題型:解答題

          設有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個命題:
          ①存在一條定直線與所有的圓均相切;
          ②存在一條定直線與所有的圓均相交;
          ③存在一條定直線與所有的圓均不相交;
          ④所有的圓均不經(jīng)過原點.
          其中真命題的代號是    (寫出所有真命題的代號).

          查看答案和解析>>

          科目:高中數(shù)學 來源:2007年江西省高考數(shù)學試卷(理科)(解析版) 題型:解答題

          設有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個命題:
          ①存在一條定直線與所有的圓均相切;
          ②存在一條定直線與所有的圓均相交;
          ③存在一條定直線與所有的圓均不相交;
          ④所有的圓均不經(jīng)過原點.
          其中真命題的代號是    (寫出所有真命題的代號).

          查看答案和解析>>

          同步練習冊答案