日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意的a,b∈R,滿足f(a•b)=af(b)+bf(a).又已知f(2)=2,an=
          f(2n)
          n
          ,bn=
          f(2n)
          2n
          (n∈N*)
          ,考查下列結論:①f(0)=0;②f(-1)=-1;③a2是a1,a3的等比中項;④b2是b1,b3的等差中項.其中正確的是
          ①③④
          ①③④
          .(填上所有正確命題的序號)
          分析:令a=b=0,得f(0)=f(0•0)=0,可知①正確;
          令a=b=1,得f(1)=f(1•1)=2f(1),f(1)=0;又令a=b=-1,得f(1)=-f(-1)-f(-1)=2f(-1),
          得f(-1)=0,可知②不正確;
          由f(2)=2,則f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n,得bn=bn-1+1,{bn}是等差數(shù)列,故④正確;
          又b1=1,bn=1+(n-1)×1=n,f(2n)=2nbn=n•2n,則an=2n,數(shù)列{an}是等比數(shù)列,故③正確.
          解答:解:∵f(0)=f(0•0)=0•f(0)+0•f(0)=0,∴①正確;
          又f(1)=f(1•1)=2f(1),∴f(1)=0;f(1)=f[(-1)•(-1)]=-2f(-1),∴f(-1)=0,故②錯;
          又∵f(2)=2,∴f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n,∴bn=
          f(2n)
          2n
          =
          2f(2n-1) +2n
          2n
          =
          f(2n-1)
          2n-1
          +1
          即bn=bn-1+1,∴{bn}是等差數(shù)列,故④正確;
          又b1=
          f(2)
          2
          =1,∴bn=1+(n-1)×1=n,∴f(2n)=2nbn=n•2n,∴an=2n,∴數(shù)列{an}是等比數(shù)列,故③正確.
          故答案為:①③④
          點評:本題考查了數(shù)列與函數(shù)的綜合運用,主要涉及了函數(shù)的賦值法,等差數(shù)列,等比數(shù)列的定義及通項公式的計算等知識.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內單調遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
          f(a)+f(b)
          a+b
          >0

          (1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
          (2)解不等式:f(
          1
          x-1
          )>0,x∈(0,+∞);
          (3)若f′(x)=-2x+1+
          1
          x
          =-
          2x2-x-1
          x
          對所有f'(x)=0,任意x=-
          1
          2
          恒成立,求實數(shù)x=1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知f(x)是定義在實數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設a=f(log47),b=f(log
          12
          3)
          ,c=f(0.2-0.6),則a,b,c的大小關系
          a>b>c
          a>b>c

          查看答案和解析>>

          同步練習冊答案