日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          lnx+ax
          (a∈R)

          (Ⅰ)求f(x)的極值;
          (Ⅱ)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點,求實數(shù)a的取值范圍.
          分析:(Ⅰ)由函數(shù)f(x)=
          lnx+a
          x
          (a∈R)
          求導(dǎo),令f'(x)=0,求出根,分析其兩側(cè)導(dǎo)數(shù)的符號,確定函數(shù)的極值;
          (Ⅱ)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點,轉(zhuǎn)化為求函數(shù)f(x)在區(qū)間(0,e2]上的值域,根據(jù)(Ⅰ)分類討論函數(shù)在區(qū)間(0,e2]是的單調(diào)性,確定函數(shù)f(x)的最值.
          解答:解:(Ⅰ)f(x)的定義域為(0,+∞),f'(x)=
          1-(lnx+a)
          x 2

          令f'(x)=0得x=e1-a
          當(dāng)x∈(0,e1-a)時,f'(x)>0,f(x)是增函數(shù)
          當(dāng)x∈(e1-a,+∞)時,f'(x)<0,f(x)是減函數(shù)
          ∴f(x)在x=e1-a處取得極大值,f(x)極大值=f(e1-a)=ea-1
          (Ⅱ)(i)當(dāng)e1-a<e2時,a>-1時,由(Ⅰ)知f(x)在(0,e1-a)上是增函數(shù),在(e1-a,e2]上是減函數(shù)
          ∴f(x)max=f(e1-a)=ea-1
          又當(dāng)x=e-a時,f(x)=0,當(dāng)x∈(0,e-a]時f(x)<0.
          當(dāng)x∈(e-a,e2]時,f(x)∈(0,ea-1],所以f(x)與圖象g(x)=1的圖象在(0,e2]上有公共點,等價于ea-1≥1
          解得a≥1,又a>-1,所以a≥1
          (ii)當(dāng)e1-a≥e2即a≤-1時,f(x)在(0,e2]上是增函數(shù),
          ∴f(x)在(0,e2]上的最大值為f(e2)=
          2+a
          e2

          所以原問題等價于
          2+a
          e2
          ≥1
          ,解得a≥e2-2.
          又∵a≤-1,∴無解
          綜上實數(shù)a的取值范圍是a≥1
          點評:考查利用導(dǎo)數(shù)求函數(shù)的極值和閉區(qū)間上函數(shù)的最值問題,兩個函數(shù)圖象的交點問題一般轉(zhuǎn)化為求函數(shù)的值域問題,特別注意含有參數(shù)的最值問題,對參數(shù)進(jìn)行討論,增加了題目的難度,體現(xiàn)了分類討論的思想方法.屬難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1
          3
          x3-
          3
          2
          ax2-(a-3)x+b

          (1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實數(shù)a,b的值:
          (2)當(dāng)a<3時,令g(x)=
          f′(x)
          x
          ,求y=g(x)在[l,2]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1
          2
          x2-alnx
          的圖象在點P(2,f(2))處的切線方程為l:y=x+b
          (1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
          (2)當(dāng)x∈[
          1
          e
          ,e]
          時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=lnx,g(x)=
          12
          x2+a
          (a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點的橫坐標(biāo)為1.
          (1)求直線l的方程及a的值;
          (2)當(dāng)k>0時,試討論方程f(1+x2)-g(x)=k的解的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          13
          x3+x2+ax

          (1)討論f(x)的單調(diào)性;
          (2)設(shè)f(x)有兩個極值點x1,x2,若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x3-
          32
          ax2+b
          ,a,b為實數(shù),x∈R,a∈R.
          (1)當(dāng)1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
          (2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;
          (3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案