日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.
          (Ⅰ)求直線AP與平面BCC1B1所成的角的大小(結(jié)果用反三角函數(shù)值表示);
          (Ⅱ)設(shè)O點在平面D1AP上的射影是H,求證:D1H⊥AP;
          (Ⅲ)求點P到平面ABD1的距離.
          分析:本題宜建立空間坐標(biāo)系,用空間向量來解決求線面角證線線垂直,求點到面 距離.
          (Ⅰ)由題設(shè)條件,連接AC,即可得出AP與平面BCC1B1所成的角為∠PAC,求出線的方向向量與面的法向量,用公式求出線面角的正弦.
          (Ⅱ)由圖形及題設(shè)條件可以證得AP⊥面D1OH,由線面垂直證得母線線垂直,求出兩線.
          (Ⅲ)用向量法求點到面的距離,求線段對應(yīng)的向量在面的法向量的投影的長度即可.
          解答:精英家教網(wǎng)解:建立如圖的空間坐標(biāo)系,由已知D(0,0,0),A(4,0,0),C(0,4,0),
          D(0,0,4),B(4,4,0)
          (1)如圖,連接PB,由正方體的性質(zhì)知∠APB即為所求的線面角,∵CC1=4CP∴CP=1,由勾股定理知BP=
          17
          ,
          ∴tan∠APB=
          AB
          PB
          =
          4
          17
          =
          4
          17
          17

          ∠APB=arctan
          4
          17
          17

          (2)證明:由已知OH⊥面APD1,∴OH⊥AP,
          連接B1D1,由于O是上底面的中心,故O∈B1D1,
          由正體的性質(zhì)知B1D1⊥面AC1
          又AP?面AC1,
          ∴B1D1⊥AP
          又B1D1∩OH=0
          ∴AP⊥面D1OH,
          ∴D1H⊥AP
          (3)如圖
          AB
          =(0,4,0),
          AD 1
          =(-4,0,4)
          AP
          =(-4,4,1)
          令面ABD1的法向量為
          n
          =(x,y,z)
          故有
          AB
          n
          =0
          AD 1
          n
          =0
          ,即
          x-z=0
          y=0

          令x=1,則z=1,故
          n
          =(1,0,1)
          故點P到面面ABD1的距離d=
          3
          2
          =
          3
          2
          2

          點P到面面ABD1的距離為
          3
          2
          2
          點評:本考點是立體幾何,對三個問題其中前兩個問題用幾何法證明較易,故采用了幾何法,而第三個問題點到面的垂線段不易做出,故采用了向量法求點到面的距離,在做題時應(yīng)根據(jù)題目的條件靈活選用解題的方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在棱長為4的正方體ABCD-A1B1C1D1中,點E是棱CC1的中點.
          (I)求三棱錐D1-ACE的體積;
          (II)求異面直線D1E與AC所成角的余弦值;
          (III)求二面角A-D1E-C的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在棱長為4的正方體ABCD-A′B′C′D′中,E、F分別是AD、A′D′的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面A′B′C′D′上運動,則線段MN的中點P的軌跡(曲面)與二面角A-A′D′-B′所圍成的幾何體的體積為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在棱長為4的正方體ABCD-A1B1C1D1中,點E、F分別在棱AA1和AB上,且C1E⊥EF,則|AF|的最大值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆四川省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

          (文)如圖,在棱長為4的正方體ABCDABCD′中,EF分別是AD、AD′的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面ABCD′?上運動,則線段MN的中點P的軌跡(曲面)與二面角AAD′-B′所圍成的幾何體的體積為(  )

          A.      B.        C.         D.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江高三上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分12分)如圖所示,在棱長為4的正方體ABCD—A1B1C1D1中,點E是棱CC1的中點。

           

          (I)求三棱錐D1—ACE的體積;

          (II)求異面直線D1E與AC所成角的余弦值;

          (III)求二面角A—D1E—C的正弦值。

           

          查看答案和解析>>

          同步練習(xí)冊答案