日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知向量 =(sinx,﹣1),向量 =( cosx,﹣ ),函數(shù)f(x)=( +
          (1)求f(x)的最小正周期T;
          (2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,A為銳角,a=2 ,c=4,且f(A)恰是f(x)在[0, ]上的最大值,求A和b.

          【答案】
          (1)解:∵向量 =(sinx,﹣1),向量 =( cosx,﹣ ),

          ∴f(x)=( + =sin2x+1+ sinxcosx+ = +1+ sin2x+ = sin2x﹣ cos2x+2=sin(2x﹣ )+2,

          ∵ω=2,

          ∴函數(shù)f(x)的最小正周期T=


          (2)解:由(1)知:f(x)=sin(2x﹣ )+2,

          ∵x∈[0, ],

          ∴﹣ ≤2x﹣ ,

          ∴當(dāng)2x﹣ = 時,f(x)取得最大值3,此時x= ,

          ∴由f(A)=3得:A=

          由余弦定理,得a2=b2+c2﹣2bccosA,

          ∴12=b2+16﹣4b,即(b﹣2)2=0,

          ∴b=2.


          【解析】(1)由兩向量的坐標(biāo),利用平面向量的數(shù)量積運法則列出f(x)解析式,利用二倍角的正弦、余弦函數(shù)公式化簡,整理后再利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,代入周期公式即可求出最小正周期;(2)根據(jù)x的范圍,求出這個角的范圍,利用正弦函數(shù)的性質(zhì)求出f(x)的最大值,以及此時x的值,由f(A)為最大值求出A的度數(shù),利用余弦定理求出b的值即可.
          【考點精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識,掌握兩角和與差的正弦公式:,以及對余弦定理的定義的理解,了解余弦定理:;;

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=alnx﹣x+1(a∈R).
          (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)若對任意x∈(0,+∞),都有f(x)≤0,求實數(shù)a的取值范圍;
          (Ⅲ)證明 (其中n∈N* , e為自然對數(shù)的底數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機“微信運動”團隊中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
          8430 8215 7453 7446 6754
          7638 6834 6460 6830 9860
          8753 9450 9860 7290 7850
          對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
          步數(shù)分組統(tǒng)計表(設(shè)步數(shù)為x)

          組別

          步數(shù)分組

          頻數(shù)

          A

          5500≤x<6500

          2

          B

          6500≤x<7500

          10

          C

          7500≤x<8500

          m

          D

          8500≤x<9500

          2

          E

          9500≤x<10500

          n

          (Ⅰ)寫出m,n的值,若該“微信運動”團隊共有120人,請估計該團隊中一天行走步數(shù)不少于7500步的人數(shù);
          (Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 , ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 , ,試分別比較v1與v2 , 的大;(只需寫出結(jié)論)
          (Ⅲ)從上述A,E兩個組別的步數(shù)數(shù)據(jù)中任取2個數(shù)據(jù),求這2個數(shù)據(jù)步數(shù)差的絕對值大于3000步的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)P為曲線C1上動點,Q為曲線C2上動點,則稱|PQ|的最小值為曲線C1 , C2之間的距離,記作d(C1 , C2).若C1:x2+y2=2,C2:(x﹣3)2+(y﹣3)2=2,則d(C1 , C2)=;若C3:ex﹣2y=0,C4:lnx+ln2=y,則d(C3 , C4)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,半徑為5cm的圓形紙板內(nèi)有一個相同圓心的半徑為1cm的小圓,現(xiàn)將半徑為1cm的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機落在紙板內(nèi),則硬幣與小圓無公共點的概率為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.直線l的參數(shù)方程是 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρ= sin( ).
          (1)求曲線C的直角坐標(biāo)方程;
          (2)設(shè)直線l與曲線C相交于M、N兩點,求M、N兩點間的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知各項均不相等的等差數(shù)列{an}滿足a1=1,且a1 , a2 , a5成等比數(shù)列.
          (1)求{an}的通項公式;
          (2)若bn=(﹣1)n (n∈N*),求數(shù)列{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若關(guān)于x不等式xlnx﹣x3+x2≤aex恒成立,則實數(shù)a的取值范圍是(
          A.[e,+∞)
          B.[0,+∞)
          C.
          D.[1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣t有三個不同的零點x1 , x2 , x3 , 且x1<x2<x3 , 則﹣ + + 的取值范圍是

          查看答案和解析>>

          同步練習(xí)冊答案