日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù), 為自然對數(shù)的底數(shù)).

          (1)若曲線在點處的切線斜率為0,且有極小值,

          求實數(shù)的取值范圍.

          (2)當 時,若不等式: 在區(qū)間內(nèi)恒成立,求實數(shù)的最大值.

          【答案】(Ⅰ)(﹣∞,0); (Ⅱ)1+e

          【解析】試題分析:

          (1)首先求解導函數(shù),結(jié)合導函數(shù)與原函數(shù)的關(guān)系可得實數(shù)a的取值范圍為(﹣∞,0);

          (2)不等式等價于xf(x)﹣m(x﹣1)>e,構(gòu)造新函數(shù)h(x)=lnx+ex﹣m(x﹣1) ,結(jié)合題意討論新函數(shù)的性質(zhì)可得實數(shù)的最大值為1+e.

          試題解析:

          (Ⅰ)

          ∵f′(e)=0,∴b=0,則

          當a>0時,f′(x)在(0,e)內(nèi)大于0,在(e,+∞)內(nèi)小于0,

          ∴f(x)在(0,e)內(nèi)為增函數(shù),在(e,+∞)內(nèi)為減函數(shù),即f(x)有極大值而無極小值;

          當a<0時,f(x)在(0,e)內(nèi)為減函數(shù),在(e,+∞)內(nèi)為增函數(shù),

          即f(x)有極小值而無極大值.

          ∴a<0,即實數(shù)a的取值范圍為(﹣∞,0);

          (Ⅱ)xf(x)>e+m(x﹣1)xf(x)﹣m(x﹣1)>e,

          當 a=1,b=﹣1 時,設(shè)h(x)=xf(x)﹣m(x﹣1)=lnx+ex﹣m(x﹣1).

          則h′(x)=

          令t(x)=h′(x)=

          ∵x>1,∴t′(x)=

          ∴h′(x)在(1,+∞)內(nèi)單調(diào)遞增,

          ∴當x>1時,h′(x)>h′(1)=1+e﹣m.

          ①當1+e﹣m≥0時,即m≤1+e時,h′(x)>0,

          ∴h(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞增,

          ∴當x>1時,h(x)>h(1)=e恒成立;

          ②當1+e﹣m<0時,即m>1+e時,h′(x)<0,

          ∴存在x0∈(1,+∞),使得h′(x0)=0.∴h(x)在區(qū)間(1,x0)內(nèi)單調(diào)遞減,

          在(x0 , +∞)內(nèi)單調(diào)遞增.由h(x0)<h(1)=e,

          ∴h(x)>e不恒成立.綜上所述,實數(shù)m的取值范圍為(﹣∞,1+e].

          ∴實數(shù)m的最大值為:1+e.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)討論的單調(diào)性;

          (Ⅱ)證明:當時,函數(shù))有最小值.記的最小值為,求的值域;

          (Ⅲ)若存在兩個不同的零點, ),求的取值范圍,并比較與0的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】過點A(a,a)可作圓x2+y2﹣2ax+a2+2a﹣3=0的兩條切線,則實數(shù)a的取值范圍為(
          A.a<﹣3或a>1
          B.a<
          C.﹣3<a<1 或a>
          D.a<﹣3或1<a<

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)= sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)對任意x∈R,都有f(﹣x)+f(x)=0,f(x)+f(x+ )=0,則f( )=(
          A.0
          B.1
          C.
          D.2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

          將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

          (1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認為“體育迷”與性別有關(guān)?

          (2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求分布列,期望和方差.

          附:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)向量 =(sinx,cosx), =(cosx,sinx),x∈R,函數(shù)f(x)= ).
          (1)求函數(shù)f(x)的最小正周期;
          (2)當x∈[- ]時,求函數(shù)f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某校從高一年級期末考試的學生中抽出60名學生,其成績(均為整數(shù))的頻率分布直方圖如圖所示:
          (1)依據(jù)頻率分布直方圖,估計這次考試的及格率(60分及以上為及格)和平均分;
          (2)已知在[90,100]段的學生的成績都不相同,且都在94分以上,現(xiàn)用簡單隨機抽樣方法,從95,96,97,98,99,100這6個數(shù)中任取2個數(shù),求這2個數(shù)恰好是兩個學生的成績的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列函數(shù)在(0,+∞)上為減函數(shù)的是(
          A.y=﹣|x﹣1|
          B.y=ex
          C.y=ln(x+1)
          D.y=﹣x(x+2)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐中, .

          (1)若的中點,求證: 平面;

          (2)若,求證:平面平面.

          查看答案和解析>>

          同步練習冊答案