日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于實數(shù)a,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號||x||表示,對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:a1=|a,an+1=其中n=1,2,3,…
          (1)若a=,求數(shù)列{an};
          (2)當a時,對任意的n∈N*,都有an=a,求符合要求的實數(shù)a構成的集合A.
          (3)若a是有理數(shù),設a= (p 是整數(shù),q是正整數(shù),p、q互質(zhì)),問對于大于q的任意正整數(shù)n,是否都有an=0成立,并證明你的結論.
          【答案】分析:(1)由題設知=,a2====,由此能求出
          (2)由a1=||a||=a,知,1<<4,由此進行分類討論,能求出符合要求的實數(shù)a構成的集合A.
          (3)成立.證明:由a是有理數(shù),可知對一切正整數(shù)n,an為0或正有理數(shù),可設,由此利用分類討論思想能夠推導出數(shù)列{am}中am以及它之后的項均為0,所以對不大q的自然數(shù)n,都有an=0.
          解答:解:(1)∵滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號||x||表示,
          a1=,an+1=其中n=1,2,3,…
          =,a2====,…(2分)
          ak=,則ak+1===,
          所以.…(4分)
          (2)∵a1=||a||=a,∴,∴1<<4,
          ①當,即1<<2時,==-1=a,
          所以a2+a-1=0,
          解得a=,(a=∉(,1),舍去).…(6分)
          ②當,即2≤<3時,a2==
          所以a2+2a-1=0,
          解得a==,(a=-∉(,],舍去).…(7分)
          ③當,即3<4時,
          所以a2+3a-1=0,
          解得a=(a=,舍去).…(9分)
          綜上,{a=,a=,a=}.…(10分)
          (3)成立.…(11分)
          證明:由a是有理數(shù),可知對一切正整數(shù)n,an為0或正有理數(shù),
          可設(pn是非負整數(shù),qn是正整數(shù),且既約).…(12分)
          ①由,得0≤p1≤q;…(13分)
          ②若pn≠0,設qn=apn+β(0≤βPn,α,β是非負整數(shù))
          =a+,而由,得=,
          ==,
          故Pn+1=β,qn+1=Pn,得0≤Pn+1<Pn.…(14分)
          若Pn=0,則pn+1=0,…(15分)
          若a1,a2,a3,…,aq均不為0,則這q正整數(shù)互不相同且都小于q,
          但小于q的正整數(shù)共有q-1個,矛盾.…(17分)
          故a1,a2,a3,…,aq中至少有一個為0,即存在m(1≤m≤q),使得am=0.
          從而數(shù)列{am}中am以及它之后的項均為0,所以對不大q的自然數(shù)n,都有an=0.…(18分)
          (其它解法可參考給分)
          點評:本題考查數(shù)列的通項公式的求法,考查集合的求法,考查an=0是否成立的判斷與證明.綜合性強,計算量大,難度較高,對數(shù)學思維能力的要求較高.解題時要認真審題,注意等價轉(zhuǎn)化思想和分類討論思想的合理運用.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2013•房山區(qū)一模)對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號<x>表示.例<1.2>=0.2,<-1.2>=0.8,<
          8
          7
          >=
          1
          7
          .對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:a1=<a>,an+1=
          1
          an
           an≠0
          0        an=0
          ,其中n=1,2,3,….
          (Ⅰ)若a=
          2
          ,求數(shù)列{an}的通項公式;
          (Ⅱ)當a>
          1
          4
          時,對任意的n∈N+,都有an=a,求符合要求的實數(shù)a構成的集合A;
          (Ⅲ)若a是有理數(shù),設a=
          p
          q
           (p是整數(shù),q是正整數(shù),p,q互質(zhì)),對于大于q的任意正整數(shù)n,是否都有an=0成立,證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•楊浦區(qū)一模)對于實數(shù)a,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號||x||表示,對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:a1=|a,an+1=
          ||
          1
          an
           ||,an≠0
          0,an=0
          其中n=1,2,3,…
          (1)若a=
          2
          ,求數(shù)列{an};
          (2)當a
          1
          4
          時,對任意的n∈N*,都有an=a,求符合要求的實數(shù)a構成的集合A.
          (3)若a是有理數(shù),設a=
          p
          q
           (p 是整數(shù),q是正整數(shù),p、q互質(zhì)),問對于大于q的任意正整數(shù)n,是否都有an=0成立,并證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號{x}表示.例如{1.2}=0.2,{-1.2}=0.8,{
          8
          7
          }=
          1
          7
          .對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:a1={a},an+1=
          1
          an
            ,an≠0
          0, an=0
            其中n=1,2,3,….
          (1)若a=
          2
          ,求a2,a3 并猜想數(shù)列{a}的通項公式(不需要證明);
          (2)當a>
          1
          4
          時,對任意的n∈N*,都有an=a,求符合要求的實數(shù)a構成的集合A;
          (3)若a是有理數(shù),設a=
          p
          q
           (p是整數(shù),q是正整數(shù),p,q互質(zhì)),對于大于q的任意正整數(shù)n,是否都有an=0成立,證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號<x>表示.對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:( i )a1=<a>;(ii)an+1=
          1
          an
          >,(an≠0)
          0,(an=0)
          ,當a
          1
          2
          時,對任意的自然數(shù)n都有an=a,則實數(shù)a=
           

          查看答案和解析>>

          同步練習冊答案