日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題14分)已知橢圓的兩個(gè)焦點(diǎn),且橢圓短軸的

          兩個(gè)端點(diǎn)與 構(gòu)成正三角形.

          (1)求橢圓的方程;

          (2)過(guò)點(diǎn)(1,0)且與坐標(biāo)軸不平行的直線與橢圓交于不同兩點(diǎn)P、Q,

          若在軸上存在定點(diǎn)E(,0),使恒為定值,求的值.

          解:(1)由題意知  =又∵橢圓的短軸的兩個(gè)端點(diǎn)與F構(gòu)成正三角形

          =1   從而    ∴橢圓的方程為=1

          (2)設(shè)直線的斜率為,則的方程為

             消得   

          設(shè),則由韋達(dá)定理得  

               

          =

          =

          =

          =  ……………………………13

          要使上式為定值須, 解得  故時(shí),為定值

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本題14分)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過(guò)右焦點(diǎn)軸不垂直的直線交橢圓于,兩點(diǎn).

          (Ⅰ)求橢圓的方程;

          (Ⅱ)當(dāng)直線的斜率為1時(shí),求的面積;

          (Ⅲ)在線段上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?

          若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題

          (本題滿分14分)     已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中

          F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

          (I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省六校高三聯(lián)考數(shù)學(xué)理卷 題型:解答題

          ((本題滿分14分)

          已知橢圓的兩個(gè)焦點(diǎn),且橢圓短軸的兩個(gè)端點(diǎn)與構(gòu)成正三角形.

          (1)求橢圓的方程;

          (2)過(guò)點(diǎn)(1,0)且與坐標(biāo)軸不平行的直線與橢圓交于不同兩點(diǎn)P、Q,若在軸上存在定點(diǎn)E(,0),使恒為定值,求的值.

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省、華師附中、深圳中學(xué)、廣雅中學(xué)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

          ((本題滿分14分)

          已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn)  在直線上。

          (1)求橢圓的標(biāo)準(zhǔn)方程

          (2)求以OM為直徑且被直線截得的弦長(zhǎng)為2的圓的方程;

          (3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)FOM的垂線與以OM為直徑的圓交于點(diǎn)N,求證:線段ON的長(zhǎng)為定值,并求出這個(gè)定值。

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案