日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱錐P-ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AB=AP,E為PB的中點(diǎn).
          (Ⅰ)證明:AE⊥平面PBC;
          (Ⅱ)求二面角B-PC-D的大。
          分析:(I)先證明AE⊥PB,BC⊥平面PAB,可得BC⊥AE,利用線面垂直的判定定理,可得結(jié)論;
          (II)作BM⊥PC,BM交PC于點(diǎn)M,連接DM,則∠BMD為二面角B-PC-D的平面角.在△BMD中,利用余弦定理可求.
          解答:(I)證明:∵AB=AP,E為PB的中點(diǎn),
          ∴AE⊥PB
          ∵PA⊥底面ABCD,BC?底面ABCD,
          ∴PA⊥BC
          ∵BC⊥AB,PA∩AB=A
          ∴BC⊥平面PAB,
          ∵AE?平面PAB,
          ∴BC⊥AE
          ∵PB∩BC=B
          ∴AE⊥平面PBC;
          (Ⅱ)解:作BM⊥PC,BM交PC于點(diǎn)M,連接DM,則
          ∵PB=PD,BC=CD,PC=PC
          ∴△PBC≌△PCD
          ∴DM⊥PC
          ∴∠BMD為二面角B-PC-D的平面角.
          在△BMD中,BD=
          2
          ,BM=DM=
          6
          3
          ,∴cos∠BMD=
          BM2+DM2-BD2
          2BM•DM
          =-
          1
          2

          ∴∠BMD=
          3

          ∴二面角B-PC-D的平面角為
          3
          點(diǎn)評(píng):本題考查線面垂直,考查面面角,考查學(xué)生分析解決問(wèn)題的能力,考查學(xué)生的計(jì)算能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
          1
          2
          ,x,y),且
          1
          x
          +
          a
          y
          ≥8恒成立,則正實(shí)數(shù)a的最小值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時(shí),tanθ的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
          (Ⅰ)求證:DE‖平面PBC;
          (Ⅱ)求證:AB⊥PE;
          (Ⅲ)求二面角A-PB-E的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點(diǎn)繞三棱錐側(cè)面一圈回到點(diǎn)A的最短距離是
          3
          ,則PA=
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點(diǎn)D,E分別在棱
          PB,PC上,且BC∥平面ADE
          (I)求證:DE⊥平面PAC;
          (Ⅱ)當(dāng)二面角A-DE-P為直二面角時(shí),求多面體ABCED與PAED的體積比.

          查看答案和解析>>