(1)當(dāng)a為何值時(shí),BD⊥平面PAC?試證明你的結(jié)論.
(2)當(dāng)a=4時(shí),求證:BC邊上存在一點(diǎn)M,使得PM⊥DM.
(3)若在BC邊上至少存在一點(diǎn)M,使PM⊥DM,求a的取值范圍.
思路分析:本題第(1)問(wèn)是尋求BD⊥平面PAC的條件,即BD垂直于平面PAC內(nèi)兩相交直線,易知BD⊥PA,問(wèn)題歸結(jié)為a為何值時(shí),BD⊥AC,從而知ABCD為正方形.
(1)解:當(dāng)a=2時(shí),ABCD為正方形,則BD⊥AC.
又∵PA⊥底面ABCD,BD平面ABCD,
∴BD⊥PA.
∴BD⊥平面PAC.
故當(dāng)a=2時(shí),BD⊥平面PAC.
(2)證明:當(dāng)a=4時(shí),取BC邊的中點(diǎn)M,AD邊的中點(diǎn)N,連結(jié)AM、DM、MN.
∵ABMN和DCMN都是正方形,∴∠AMD=∠AMN+∠DMN=45°+45°=90°,即DM⊥AM.又PA⊥底面ABCD,由三垂線定理,得PM⊥DM,故當(dāng)a=4時(shí),BC邊的中點(diǎn)M使PM⊥DM.
(3)解:設(shè)M是BC邊上符合題設(shè)的點(diǎn)M,
∵PA⊥底面ABCD,
∴DM⊥AM.
因此,M點(diǎn)應(yīng)是以AD為直徑的圓和BC邊的一個(gè)公共點(diǎn),則AD≥2AB,即a≥4為所求.
講評(píng):本題的解決中充分運(yùn)用了平面幾何的相關(guān)知識(shí).因此,立體幾何解題中,要注意有關(guān)的平面幾何知識(shí)的運(yùn)用.事實(shí)上,立體幾何問(wèn)題最終是在一個(gè)或幾個(gè)平面中得以解決的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com