日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥BD,且AB=BC=CA=BD=2AE=2
          (Ⅰ)求證:平面ECD⊥平面BCD
          (Ⅱ)求二面角D-EC-B的大。
          (Ⅲ)求三棱錐A-ECD的體積.
          分析:(Ⅰ)欲證平面ECD⊥平面BCD,根據(jù)面面垂直的判定定理可知在平面ECD內(nèi)一直線與面CBD垂直,分別取CD、CB的中點(diǎn)F、G,連接EF、FG、AG,易證EF⊥面CBD,又EF?平面ECD,滿足定理所需條件;
          (Ⅱ)連接BF,過F作FM⊥EC,垂足為M,連接MB,根據(jù)二面角平面角的定義可知∠BMF為二面角D-EC-B的平面角,在△ECF中,求出MF,在三角形BMF中求出此角即可;
          (Ⅲ)先用等體積法將三棱錐A-ECD的體積轉(zhuǎn)化成三棱錐C-EAD的體積,然后利用三棱錐的體積公式求出所求.
          解答:解:(Ⅰ)證明:分別取CD、CB的中點(diǎn)F、G,連接EF、FG、AG.
          由題知四邊形AEFG為矩形,易證AG⊥面CBD,AG∥EF,
          ∴EF⊥面CBD,
          又EF?平面ECD,∴平面ECD⊥平面BCD
          解:(Ⅱ)連接BF,則BF⊥CD,由(Ⅰ)知,BF⊥面ECD,過F作FM⊥EC,垂足為M,連接MB,
          則∠BMF為二面角D-EC-B的平面角.
          由題意知,EC=ED=
          5
          ,CD=2
          2
          ,
          ∴在△ECF中,MF=
          EF•FC
          CE
          =
          30
          5
          ,又BF=
          2

          tan∠BMF=
          BF
          MF
          =
          15
          3
          ,
          ∴二面角D-EC-B的大小為arctan
          15
          3

          (Ⅲ)VA-ECD =VC-AED=
          1
          3
          S△ADE ×
          3
          =
          3
          3
          點(diǎn)評:本題主要考查了面面垂直的判定,以及二面角的度量和體積的計(jì)算,體積的求解在最近兩年高考中頻繁出現(xiàn),值得重視.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
          .
          BB1AB=AC=AA1=
          2
          2
          BC,B1C1
          .
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)求證:AB1∥平面A1C1C;
          (3)求二面角C1-A1C-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB
          ,B1C1
          .
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (Ⅰ)求證:AB1∥平面 A1C1C;
          (Ⅱ)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
          12
          BC.
          (Ⅰ)求證:面A1AC⊥面ABC;
          (Ⅱ)求證:AB1∥面A1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
          2
          2
          BC
          ,B1C1∥=
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)若D是BC的中點(diǎn),求證:B1D∥平面A1C1C;
          (3)若BC=2,求幾何體ABC-A1B1C1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB,B1C1
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (I)求證:A1B1⊥平面AA1C; 
          (II)求證:AB1∥平面 A1C1C;
          (II)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案