已知函數(shù)f(x)=
(1)若h(x)=f(x)-g(x)存在單調(diào)增區(qū)間,求a的取值范圍;
(2)是否存在實(shí)數(shù)a>0,使得方程在區(qū)間
內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,求出a的取值范圍?若不存在,請(qǐng)說(shuō)明理由。
(Ⅰ) a的取值范圍是(-1, 0)∪(0, +∞) (Ⅱ)a的取值范圍是(1, )
(1)由已知,得h(x)= 且x>0,
則hˊ(x)=ax+2-=
, (2分)
∵函數(shù)h(x)存在單調(diào)遞增區(qū)間,
∴hˊ(x)≥0有解, 即不等式ax2+2x-1≥0有x>0的解. (3分)
當(dāng)a<0時(shí), y=ax2+2x-1的圖象為開(kāi)口向下的拋物線(xiàn), 要使ax2+2x-1≥0總有x>0的解, 則方程ax2+2x-1=0至少有一個(gè)不重復(fù)正根, 而方程ax2+2x-1=0總有兩個(gè)不相等的根時(shí), 則必定是兩個(gè)不相等的正根. 故只需Δ=4+4a>0, 即a>-1. 即-1<a<0(5分)
當(dāng)a>0 時(shí), y= ax2+2x-1的圖象為開(kāi)口向上的拋物線(xiàn), ax2+2x-1≥0 一定有x>0的解. (6分)
綜上, a的取值范圍是(-1, 0)∪(0, +∞) (7分)
(2)方程
即為
等價(jià)于方程ax2+(1-2a)x-lnx=0 . (8分)
設(shè)H(x)= ax2+(1-2a)x-lnx, 于是原方程在區(qū)間()內(nèi)根的問(wèn)題, 轉(zhuǎn)化為函數(shù)H(x)在區(qū)間(
)內(nèi)的零點(diǎn)問(wèn)題. (9分)
Hˊ(x)=2ax+(1-2a)-=
(10分)
當(dāng)x∈(0, 1)時(shí), Hˊ(x)<0, H(x)是減函數(shù);
當(dāng)x∈(1, +∞)時(shí), Hˊ(x)>0, H(x)是增函數(shù);
若H(x)在()內(nèi)有且只有兩個(gè)不相等的零點(diǎn), 只須
(13分)
解得, 所以a的取值范圍是(1,
) (14分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
1 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2x-2-x | 2x+2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x-1 | x+a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com