日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱錐中,直線(xiàn)平面,且
          ,又點(diǎn),,分別是線(xiàn)段,,的中點(diǎn),且點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn).
          證明:直線(xiàn)平面;
          (2) 若,求二面角的平面角的余弦值.
          (1)參考解析;(2)

          試題分析:(1)點(diǎn),分別是線(xiàn)段,的中點(diǎn)所以, 平面PAC.所以平面PAC.同理證明MN 平面PAC.又由于.所以平面QMN平面PAC.又平面QMN.所以直線(xiàn)平面
          (2)根據(jù)已知條件建立坐標(biāo)系,寫(xiě)出關(guān)鍵點(diǎn)的坐標(biāo),并寫(xiě)出相應(yīng)的向量,計(jì)算平面QAN與 MAN的法向量,求法向量的夾角,即可得到結(jié)論.
          (1).連結(jié)QM   因?yàn)辄c(diǎn),,分別是線(xiàn)段,的中點(diǎn)
          所以QM∥PA     MN∥AC     QM∥平面PAC   MN∥平面PAC
          因?yàn)镸N∩QM=M  所以平面QMN∥平面PAC    QK平面QMN
          所以QK∥平面PAC         7分
          (2)方法1:過(guò)M作MH⊥AN于H,連QH,則∠QHM即為
          二面角的平面角, 令
          即QM=AM=1所以
          此時(shí)sin∠MAH=sin∠BAN=   MH=   記二面角的平面角為
          則tan=    COS=即為所求。        14分
          方法2:以B為原點(diǎn),以BC、BA所在直線(xiàn)為x軸y軸建空間直角坐標(biāo)系,設(shè)
          則A(0,2,0),M(0,1,0),N(1,0,0),p(0,2,2),Q(0,1,1),
          ="(0,-1,1),"   
          ,則
             
          又平面ANM的一個(gè)法向量,所以cos=
          即為所求。              14分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,四棱錐中,平面平面,//,,
          ,且,.
          (1)求證:平面
          (2)求和平面所成角的正弦值;
          (3)在線(xiàn)段上是否存在一點(diǎn)使得平面平面,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (2013•湖北)如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線(xiàn)PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點(diǎn).
          (1)記平面BEF與平面ABC的交線(xiàn)為l,試判斷直線(xiàn)l與平面PAC的位置關(guān)系,并加以證明;
          (2)設(shè)(1)中的直線(xiàn)l與圓O的另一個(gè)交點(diǎn)為D,且點(diǎn)Q滿(mǎn)足.記直線(xiàn)PQ與平面ABC所成的角為θ,異面直線(xiàn)PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在三棱柱中,底面,,分別是棱,的中點(diǎn),為棱上的一點(diǎn),且//平面.
          (1)求的值;
          (2)求證:;
          (3)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (理)已知直三棱柱中,,是棱的中點(diǎn).如圖所示.
           
          (1)求證:平面
          (2)求二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,在四棱錐P-ABCD中,側(cè)面PAD為正三角形,底面ABCD為正方形,側(cè)面PAD⊥底面ABCD,M為底面ABCD內(nèi)的一個(gè)動(dòng)點(diǎn),且滿(mǎn)足MP=MC,則點(diǎn)M在正方形ABCD內(nèi)的軌跡為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.
          (1)試確定m,使直線(xiàn)AP與平面BDD1B1所成角為60º;
          (2)在線(xiàn)段上是否存在一個(gè)定點(diǎn),使得對(duì)任意的m,
          ⊥AP,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知正四棱柱,則與平面所成角的正弦值等于(   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          在空間直角坐標(biāo)系O-xyz中,平面OAB的法向量為=(2, –2, 1), 已知P(-1, 3, 2),則P到平面OAB的距離等于 ( 。
          A.4B.2C.3D.1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案