日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p
          (Ⅰ)求p的值;
          (參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.)
          (Ⅱ)某客運公司用A,B兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運業(yè)務(wù),每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應(yīng)配備A型車、B型車各多少輛?
          【答案】分析:(I)變量服從正態(tài)分布N(800,502),即服從均值為800,標(biāo)準差為50的正態(tài)分布,適合700<X≤900范圍內(nèi)取值即在(μ-2σ,μ+2σ)內(nèi)取值,其概率為:95.44%,從而由正態(tài)分布的對稱性得出不超過900的概率為p
          (II)設(shè)每天應(yīng)派出A型x輛、B型車y輛,根據(jù)條件列出不等式組,即得線性約束條件,列出目標(biāo)函數(shù),畫出可行域求解.
          解答:解:(Ⅰ)由于隨機變量X服從正態(tài)分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.
          由正態(tài)分布的對稱性,可得p=(P(X≤900)=P(X≤800)+P(800<X≤900)=
          (Ⅱ)設(shè)A型、B型車輛的數(shù)量分別為x,y輛,則相應(yīng)的營運成本為1600x+2400y.
          依題意,x,y還需滿足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p
          由(Ⅰ)知,p=P(X≤900),故P(X≤360x+60y)≥p等價于36x+60y≥900.
          于是問題等價于求滿足約束條件
          且使目標(biāo)函數(shù)z=1600x+2400y達到最小值的x,y.
          作可行域如圖所示,可行域的三個頂點坐標(biāo)分別為P(5,12),Q(7,14),R(15,6).
          由圖可知,當(dāng)直線z=1600x+2400y經(jīng)過可行域的點P時,直線z=1600x+2400y在y軸上截距最小,即z取得最小值.
          故應(yīng)配備A型車5輛,B型車12輛.
          點評:本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查簡單線性規(guī)劃.本題解題的關(guān)鍵是列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù),將可行域各角點的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•湖北)假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0
          (Ⅰ)求p0的值;
          (參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.)
          (Ⅱ)某客運公司用A,B兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運業(yè)務(wù),每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應(yīng)配備A型車、B型車各多少輛?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷理數(shù) 題型:044

          假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0

          (Ⅰ)求p0的值;(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974.)

          (Ⅱ)某客運公司用A、B兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運業(yè)務(wù),每車每天往返一次,A、B兩種車輛的載客量分別為36人和60人,從甲地去乙地的運營成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的運營成本最小,那么應(yīng)配備A型車、B型車各多少輛?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          假設(shè)每天從甲地去乙地的旅客人數(shù)是服從正態(tài)分布的隨機變量。記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為。

          (I)求的值;(參考數(shù)據(jù):若,有,。)

          (II)某客運公司用、兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運業(yè)務(wù),每車每天往返一次,、兩種車輛的載客量分別為36人和60人,從甲地去乙地的運營成本分別為1600元/輛和2400元/輛。公司擬組建一個不超過21輛車的客運車隊,并要求型車不多于型車7輛。若每天要以不小于的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的運營成本最小,那么應(yīng)配備型車、型車各多少輛?

          查看答案和解析>>

          同步練習(xí)冊答案