日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列an,a1、a2、…、a10是首項(xiàng)為1公差為1的等差數(shù)列,a10、a11、…、a20是公差為d(d≠0)的等差數(shù)列,a20、a21、…、a30是公差為d2的等差數(shù)列,….
          (1)若a20=40,求d;
          (2)求a30的取值范圍;
          (3)設(shè)k∈N*,求數(shù)列an前10k項(xiàng)的和S.
          分析:(1)利用a20=a10+10d和a10的值求得數(shù)列的公差d.
          (2)利用a30=a20+10d2=10(1+d+d2)整理才關(guān)于d的一元二次函數(shù),利用二次函數(shù)的性質(zhì)求得a30的取值范圍;
          (3)依題意可分別取得前10項(xiàng)的和,第2個(gè)10項(xiàng)的表達(dá)式,和第3個(gè)10項(xiàng)的表達(dá)式,進(jìn)而可知每10項(xiàng)構(gòu)成的數(shù)列的和為等比數(shù)列和等差數(shù)列的復(fù)合數(shù)列,進(jìn)而分別看d=1和d≠1利用等差數(shù)列的求和公式和等比數(shù)列的求和公式求得答案.
          解答:解:(1)依題意,a10=10,a20=a10+10d=40,解得d=3.
          (2)a30=a20+10d2=10(1+d+d2)=10[(d+
          1
          2
          )2+
          3
          4
          ]≥
          15
          2

          (3)前10項(xiàng)的和
          1
          =1+2++10=55

          第2個(gè)10項(xiàng)的和
          2
          =(10+d)+(10+2d)++(10+10d)=100+55d
          ,
          第3個(gè)10項(xiàng)的和
          3
          =(10+10d+d2)+(10+10d+2d2)++(10+10d+10d2)=100(1+d)+55d2
          ,
          d≠1時(shí)S=55(1+d+d2++dk-1)+
          100
          1-d
          [(1-d)+(1-d2)++(1-dk-1)]
          =
          55(1-dk)
          1-d
          +
          100
          1-d
          (k-
          1-dk
          1-d
          )

          d=1時(shí)S=55+155+255++[(k-1)×100+55]=5k(10k+1).
          S=
          55(1-dk)
          1-d
          +
          100
          1-d
          (k-
          1-dk
          1-d
          ),d≠1
          5k(10k+1),d=1
          點(diǎn)評(píng):本題主要考查了等差數(shù)列的性質(zhì).這是一個(gè)分段等差的數(shù)列,解題關(guān)鍵是“分”與“合”的轉(zhuǎn)換、代數(shù)運(yùn)算.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列an滿足a1=1,且4an+1-anan+1+2an=9(n∈N*
          (1)求a1,a2,a3,a4的值;
          (2)由(1)猜想an的通項(xiàng)公式,并給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列an滿足a1=2,
          an+1
          2an
          =1+
          1
          n
          ;
          (Ⅰ)求數(shù)列an的通項(xiàng)公式;
          (Ⅱ)若數(shù)列{
          an
          n
          }
          的前n項(xiàng)和為Sn,試比較an-Sn與2的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列an滿足a1=1,an+1=(1+cos2
          2
          )an+sin2
          2
          ,n∈N*

          (1)求a2,a3,a4;并求證:a2m+1+2=2(a2m-1+2),(m∈N*);
          (2)設(shè)bn=
          a2n
          a2n-1
          ,Sn=b1+b2+…+bn
          ,求證:Sn<n+
          5
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•楊浦區(qū)二模)已知數(shù)列An:a1,a2,…,an.如果數(shù)列Bn:b1,b2,…,bn滿足b1=an,bk=ak-1+ak-bk-1,其中k=2,3,…,n,則稱Bn為An的“生成數(shù)列”.
          (1)若數(shù)列A4:a1,a2,a3,a4的“生成數(shù)列”是B4:5,-2,7,2,求A4;
          (2)若n為偶數(shù),且An的“生成數(shù)列”是Bn,證明:Bn的“生成數(shù)列”是An;
          (3)若n為奇數(shù),且An的“生成數(shù)列”是Bn,Bn的“生成數(shù)列”是Cn,….依次將數(shù)列An,Bn,Cn,…的第i(i=1,2,…,n)項(xiàng)取出,構(gòu)成數(shù)列Ωi:ai,bi,ci,…證明:數(shù)列Ωi是等差數(shù)列,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列an滿足a1+2a2+22a3+…+2n-1an=
          n
          2
          (n∈N*).
          (Ⅰ)求數(shù)列{an}的通項(xiàng);
          (Ⅱ)若bn=
          n
          an
          求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案